Skip to main content

Data Storing and Conversion in Computer-Assisted Oral and Maxillofacial Treatments

  • Chapter
  • First Online:
Emerging Technologies in Oral and Maxillofacial Surgery

Abstract

Today, an increasing number of digital technologies and software are being used in advanced maxillofacial treatment planning. DICOM data provided by three-dimensional imaging, such as cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI), are stored and converted to other formats, e.g., Standard Tessellation Language (STL). These data can further easily be applied in computer-aided design and manufacturing (CAD/CAM) and, more recently, machine learning and artificial intelligence. The integration of various digital information from optical scans to DICOM data has yielded to innovative approaches in surgeries.

This chapter discusses novel technologies that can be integrated to data provided by CBCT, to augment diagnosis and surgical treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serrano C, van den Brink H, Pineau J, Prognon P, Martelli N. Benefits of 3D printing applications in jaw reconstruction: a systematic review and meta-analysis. J Cranio-Maxillofac Surg. 2019;47(9):1387–97.

    Article  Google Scholar 

  2. Spin-Neto R, Marcantonio E, Gotfredsen E, Wenzel A. Exploring CBCT-based DICOM files. A systematic review on the properties of images used to evaluate maxillofacial bone grafts. J Digit Imaging. 2011;24(6):959–66.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haeri Boroojeni HS, Mohaghegh S, Khojasteh A. Application of CAD-CAM Technologies for maxillofacial bone regeneration: a narrative review of the clinical studies. Curr Stem Cell Res Ther. 2022.

    Google Scholar 

  4. Mohaghegh S, Hosseini SF, Rad MR, Khojasteh A. 3D printed composite scaffolds in bone tissue engineering: a systematic review. Curr Stem Cell Res Ther. 2022;17(7):648–709.

    Article  CAS  PubMed  Google Scholar 

  5. Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, et al. Medical 3D printing for the radiologist. Radiographics. 2015;35(7):1965–88.

    Article  PubMed  Google Scholar 

  6. White SC, Pharoah MJ. White and Pharoah's oral radiology E-book: principles and interpretation. Amsterdam: Elsevier; 2018.

    Google Scholar 

  7. Mildenberger P, Eichelberg M, Martin E. Introduction to the DICOM standard. Eur Radiol. 2002;12(4):920–7.

    Article  PubMed  Google Scholar 

  8. Taft RM, Kondor S, Grant GT. Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent. 2011;106(6):399–408.

    Article  PubMed  Google Scholar 

  9. Van Eijnatten M, Berger FH, De Graaf P, Koivisto J, Forouzanfar T, Wolff J. Influence of CT parameters on STL model accuracy. Rapid Prototyp J. 2017;23(4):678–85. https://doi.org/10.1108/RPJ-07-2015-0092.

  10. Mitsouras D, Lee TC, Liacouras P, Ionita CN, Pietilla T, Maier SE, et al. Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation. Magn Reson Med. 2017;77(2):613–22.

    Article  CAS  PubMed  Google Scholar 

  11. van Eijnatten M, Koivisto J, Karhu K, Forouzanfar T, Wolff J. The impact of manual threshold selection in medical additive manufacturing. Int J Comput Assist Radiol Surg. 2017;12(4):607–15.

    Article  PubMed  Google Scholar 

  12. Ripley B, Levin D, Kelil T, Hermsen JL, Kim S, Maki JH, et al. 3D printing from MRI data: harnessing strengths and minimizing weaknesses. J Magn Reson Imaging. 2017;45(3):635–45.

    Article  PubMed  Google Scholar 

  13. Eley KA, Watt-Smith SR, Sheerin F, Golding SJ. “Black bone” MRI: a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur Radiol. 2014;24(10):2417–26.

    Article  PubMed  Google Scholar 

  14. Visscher DO, Van Eijnatten M, Liberton NP, Wolff J, Hofman M, Helder MN, et al. MRI and additive manufacturing of nasal alar constructs for patient-specific reconstruction. Sci Rep. 2017;7(1):1–8.

    Article  CAS  Google Scholar 

  15. Van Eijnatten M, van Dijk R, Dobbe J, Streekstra G, Koivisto J, Wolff J. CT image segmentation methods for bone used in medical additive manufacturing. Med Eng Phys. 2018;51:6–16.

    Article  PubMed  Google Scholar 

  16. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  17. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10(2):171–84.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eley KA, Watt-Smith SR, Golding SJ. “Black bone” MRI: a novel imaging technique for 3D printing. Dentomaxillofac Radiol. 2017;46(3):20160407.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45(9):e740–e60.

    Article  PubMed  Google Scholar 

  20. Kozakiewicz M, Elgalal M, Loba P, Komuński P, Arkuszewski P, Broniarczyk-Loba A, et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Cranio-Maxillofac Surg. 2009;37(4):229–34.

    Article  Google Scholar 

  21. Farajpour H, Bastami F, Bohlouli M, Khojasteh A. Reconstruction of bilateral ramus-condyle unit defect using custom titanium prosthesis with preservation of both condyles. J Mech Behav Biomed Mater. 2021;124:104765.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandes N, Van den Heever J, Hoogendijk C, Botha S, Booysen G, Els J. Reconstruction of an extensive midfacial defect using additive manufacturing techniques. J Prosthodont. 2016;25(7):589–94.

    Article  PubMed  Google Scholar 

  23. Oh J-h. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac Plast Reconstr Surg. 2018;40(1):1–7.

    Article  Google Scholar 

  24. Qassemyar Q, Assouly N, Temam S, Kolb F. Use of a three-dimensional custom-made porous titanium prosthesis for mandibular body reconstruction. Int J Oral Maxillofac Surg. 2017;46(10):1248–51.

    Article  CAS  PubMed  Google Scholar 

  25. Borohovitz CL, Abraham Z, Redmond WR. The diagnostic advantage of a CBCT-derived segmented STL rendition of the teeth and jaws using an AI algorithm. J Clin Orthod. 2021;55(6):361–9.

    PubMed  Google Scholar 

  26. Zinser MJ, Mischkowski RA, Sailer HF, Zöller JE. Computer-assisted orthognathic surgery: feasibility study using multiple CAD/CAM surgical splints. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(5):673–87.

    Article  PubMed  Google Scholar 

  27. Centenero SA-H, Hernández-Alfaro F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results–our experience in 16 cases. J Cranio-Maxillofac Surg. 2012;40(2):162–8.

    Article  Google Scholar 

  28. Unsal G-S, Turkyilmaz I, Lakhia S. Advantages and limitations of implant surgery with CAD/CAM surgical guides: a literature review. J Clin Exp Dent. 2020;12(4):e409.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Ghazizadeh Ahsaie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghazizadeh Ahsaie, M., Farajpour, H. (2023). Data Storing and Conversion in Computer-Assisted Oral and Maxillofacial Treatments. In: Khojasteh, A., Ayoub, A.F., Nadjmi, N. (eds) Emerging Technologies in Oral and Maxillofacial Surgery . Springer, Singapore. https://doi.org/10.1007/978-981-19-8602-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8602-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8601-7

  • Online ISBN: 978-981-19-8602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics