Skip to main content

Brief Introduction to Artificial Intelligence and Machine Learning

  • Chapter
  • First Online:
Emerging Technologies in Oral and Maxillofacial Surgery

Abstract

Artificial intelligence (AI) has made it possible for machines to perform human tasks. Healthcare is one of the main fields where AI and machine learning have been successfully employed. There have been many articles presenting the various applications of AI and its favorable outcomes in dentistry and maxillofacial surgery. It may be difficult for dental researchers to understand and interpret these studies since they are different in methodology. In addition, they are unfamiliar with the definitions and terminology used in these articles. The purpose of this chapter is to provide an explanation of the terms and concepts frequently used in AI articles and, specifically, in the following two chapters where we discussed its current application in maxillofacial surgery and its future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following sections of this chapter, everywhere we used the term “machine learning”; it also includes “deep learning” approaches.

References

  1. Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.

    Article  PubMed  Google Scholar 

  3. Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16(5):933–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255–60.

    Article  CAS  PubMed  Google Scholar 

  5. Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learning in radiology practice and research. Am J Roentgenol. 2017;208(4):754–60.

    Article  Google Scholar 

  6. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  7. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  PubMed  Google Scholar 

  8. Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2018;290(2):456–64.

    Article  PubMed  Google Scholar 

  9. Parakh A, Lee H, Lee JH, Eisner BH, Sahani DV, Do S. Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization. Radiol Artif Intell. 2019;1(4):e180066.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vos BD, Wolterink JM, Leiner T, Jong PA, Lessmann N, Išgum I. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans Med Imaging. 2019;38(9):2127–38.

    Article  PubMed  Google Scholar 

  11. Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S, et al. Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment. Radiology. 2019;293(3):607–17.

    Article  PubMed  Google Scholar 

  12. Lehman CD, Yala A, Schuster T, Dontchos B, Bahl M, Swanson K, et al. Mammographic breast density assessment using deep learning: clinical implementation. Radiology. 2018;290(1):52–8.

    Article  PubMed  Google Scholar 

  13. Mohammad-Rahimi H, Nadimi M, Ghalyanchi-Langeroudi A, Taheri M, Ghafouri-Fard S. Application of machine learning in diagnosis of COVID-19 through X-ray and CT images: a scoping review. Front Cardiovasc Med. 2021;8(185):638011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ngo TA, Lu Z, Carneiro G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal. 2017;35:159–71.

    Article  PubMed  Google Scholar 

  15. Chang AC. Chapter 2 - History of artificial intelligence. In: Chang AC, editor. Intelligence-based medicine. London: Academic Press; 2020. p. 23–7.

    Chapter  Google Scholar 

  16. Turing AM. On computable numbers, with an application to the Entscheidungs problem. Proc Lond Math Soc. 1937;2(1):230–65.

    Article  Google Scholar 

  17. Turing AM. Computing machinery and intelligence. Parsing the Turing test. New York: Springer; 2009. p. 23–65.

    Book  Google Scholar 

  18. Taulli T, Oni M. Artificial intelligence basics. New York: Springer; 2019.

    Book  Google Scholar 

  19. Luger GF. Artificial intelligence: structures and strategies for complex problem solving. Pearson education; 2005.

    Google Scholar 

  20. Agah A. Introduction to medical applications of artificial intelligence. Medical Applications of Artificial Intelligence. 2013;19–26.

    Google Scholar 

  21. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence. 1955. http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.

  22. Russell S, Norvig P. Artificial intelligence: a modern approach; 2002.

    Google Scholar 

  23. Matheny M, Israni ST, Ahmed M, Whicher D. Artificial intelligence in health care: the hope, the hype, the promise, the peril. NAM Special Publication. Washington, DC: National Academy of Medicine; 2019. p. 154.

    Google Scholar 

  24. van Melle W. MYCIN: a knowledge-based consultation program for infectious disease diagnosis. Int J Man Mach Stud. 1978;10(3):313–22.

    Article  Google Scholar 

  25. Zhou L, Sordo M. Chapter 5 - Expert systems in medicine. In: Xing L, Giger ML, Min JK, editors. Artificial intelligence in medicine. London: Academic Press; 2021. p. 75–100.

    Chapter  Google Scholar 

  26. Ren R, Luo H, Su C, Yao Y, Liao W. Machine learning in dental, oral and craniofacial imaging: a review of recent progress. PeerJ. 2021;9:e11451.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Grosan C, Abraham A. Intelligent systems. Cham: Springer; 2011.

    Book  Google Scholar 

  28. Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;115(11):843–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian SR. Machine learning and orthodontics, current trends and the future opportunities: a scoping review. Am J Orthod Dentofacial Orthop. 2021;160(2):170–92.e4.

    Article  PubMed  Google Scholar 

  30. Khanna SS, Dhaimade PA. Artificial intelligence: transforming dentistry today. Indian J Basic Appl Med Res. 2017;6(3):161–7.

    Google Scholar 

  31. Stheeman SE, van der Stelt PF, Mileman PA. Expert systems in dentistry. Past performance--future prospects. J Dent. 1992;20(2):68–73.

    Article  CAS  PubMed  Google Scholar 

  32. White SC. Computer-aided differential diagnosis of oral radiographic lesions. Dentomaxillofac Radiol. 1989;18(2):53–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hyman JJ, Diehl MC. A dental trauma diagnostic program. Proc Annu Symp Comput Appl Med Care. 1983:133–4.

    Google Scholar 

  34. Hyman JJ, Doblecki W. Computerized endodontic diagnosis. J Am Dent Assoc. 1983;107(5):755–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sims-Williams JH, Brown ID, Matthewman A, Stephens CD. A computer-controlled expert system for orthodontic advice. Br Dent J. 1987;163(5):161–6.

    Article  CAS  PubMed  Google Scholar 

  36. Abbey LM. An expert system for oral diagnosis. J Dent Educ. 1987;51(8):475–80.

    Article  CAS  PubMed  Google Scholar 

  37. Bayaraa T, Hyun CM, Jang TJ, Lee SM, Seo JK. A two-stage approach for beam hardening artifact reduction in low-dose dental CBCT. IEEE Access. 2020;8:225981–94.

    Article  Google Scholar 

  38. Lee J-H, Kim D-h, Jeong S-N, Choi S-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mohammad-Rahimi H, Motamadian SR, Nadimi M, Hassanzadeh-Samani S, Minabi MAS, Mahmoudinia E, et al. Deep learning for the classification of cervical maturation degree and pubertal growth spurts: a pilot study. Korean J Orthod. 2022;52(2):112–22.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mohammad-Rahimi H, Motamedian SR, Rohban MH, Krois J, Uribe S, Mahmoudinia E, et al. Deep learning for caries detection: a systematic review: DL for caries detection. J Dent. 2022;122:104115.

    Article  PubMed  Google Scholar 

  41. Saghiri MA, Asgar K, Boukani KK, Lotfi M, Aghili H, Delvarani A, et al. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J. 2012;45(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  42. Kim DW, Kim H, Nam W, Kim HJ, Cha IH. Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: a preliminary report. Bone. 2018;116:207–14.

    Article  CAS  PubMed  Google Scholar 

  43. Aliaga I, Vera V, Vera M, García E, Pedrera M, Pajares G. Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection. Artif Intell Med. 2020;103:101816.

    Article  PubMed  Google Scholar 

  44. Lee KS, Kwak HJ, Oh JM, Jha N, Kim YJ, Kim W, et al. Automated detection of TMJ osteoarthritis based on artificial intelligence. J Dent Res. 2020;99(12):1363–7.

    Article  CAS  PubMed  Google Scholar 

  45. Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod. 2020;46(7):987–93.

    Article  PubMed  Google Scholar 

  46. Alabi RO, Elmusrati M, Sawazaki-Calone I, Kowalski LP, Haglund C, Coletta RD, et al. Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool. Virchows Arch. 2019;475(4):489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alhazmi A, Alhazmi Y, Makrami A, Masmali A, Salawi N, Masmali K, et al. Application of artificial intelligence and machine learning for prediction of oral cancer risk. J Oral Pathol Med. 2021;50(5):444–50.

    Article  PubMed  Google Scholar 

  48. Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010;80(2):262–6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Murphy KP. Machine learning: a probabilistic perspective. Cambridge: MIT Press; 2012.

    Google Scholar 

  50. Ho T. Random decision forests. In: International conference on document analysis and recognition, Montreal; 1995.

    Google Scholar 

  51. Prinzie A, Van den Poel D, editors. Random multiclass classification: generalizing random forests to random MNL and random NB. In: International conference on database and expert systems applications. Cham: Springer; 2007.

    Google Scholar 

  52. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96.

    Article  PubMed  Google Scholar 

  53. Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci. 2018;115(45):11591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.

    Article  PubMed  Google Scholar 

  55. Hastie T, Tibshirani R, Friedman J. Statistical learning: data mining, inference, and prediction. Heidelberg: Springer; 2009.

    Google Scholar 

  56. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–9.

    Article  CAS  PubMed  Google Scholar 

  57. Kidoh M, Shinoda K, Kitajima M, Isogawa K, Nambu M, Uetani H, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci. 2020;19(3):195.

    Article  PubMed  Google Scholar 

  58. Rathi VGP, Palani S. Brain tumor detection and classification using deep learning classifier on MRI images. Res J Appl Sci Eng Technol. 2015;10(2):177–87.

    CAS  Google Scholar 

  59. Yang S, Kweon J, Roh J-H, Lee J-H, Kang H, Park L-J, et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci Rep. 2019;9(1):16897.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rostami B, Anisuzzaman DM, Wang C, Gopalakrishnan S, Niezgoda J, Yu Z. Multiclass wound image classification using an ensemble deep CNN-based classifier. Comput Biol Med. 2021;134:104536.

    Article  PubMed  Google Scholar 

  61. Sakellaropoulos T, Vougas K, Narang S, Koinis F, Kotsinas A, Polyzos A, et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep. 2019;29(11):3367–73.e4.

    Article  CAS  PubMed  Google Scholar 

  62. Harvey H, Glocker B. A standardised approach for preparing imaging data for machine learning tasks in radiology. In: Ranschaert ER, Morozov S, Algra PR, editors. Artificial intelligence in medical imaging: opportunities, applications and risks. Cham: Springer; 2019. p. 61–72.

    Chapter  Google Scholar 

  63. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Iii HD, Crawford K. Datasheets for datasets. Communications of the ACM. 2021;64(12):86–92.

    Google Scholar 

  64. Nelson GS. Practical implications of sharing data: a primer on data privacy, anonymization, and de-identification. InSAS global forum proceedings 2015;1–23.

    Google Scholar 

  65. Neubauer T, Heurix J. A methodology for the pseudonymization of medical data. Int J Med Inform. 2011;80(3):190–204.

    Article  PubMed  Google Scholar 

  66. Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al. Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J. 2018;69:120–35.

    Google Scholar 

  67. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290(3):590–606.

    Article  PubMed  Google Scholar 

  68. Papandreou G, Chen L-C, Murphy KP, Yuille AL. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: 2015 IEEE international conference on computer vision (ICCV); 2015. p. 1742–50.

    Google Scholar 

  69. Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: A survey on few-shot learning. ACM computing surveys (csur). 2020;53(3):1–34.

    Google Scholar 

  70. Paul R, Hawkins SH, Balagurunathan Y, Schabath M, Gillies RJ, Hall LO, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography. 2016;2(4):388–95.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L, editors. ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE; 2009.

    Google Scholar 

  72. Abdulazeez AM, Salim BW, Zeebaree DQ, Doghramachi D. Comparison of VPN Protocols at Network Layer Focusing on Wire Guard Protocol. iJIM. 2020;14(18):157.

    Google Scholar 

  73. Acharya MS, Armaan A, Antony AS, editors. A comparison of regression models for prediction of graduate admissions. In: 2019 International conference on computational intelligence in data science (ICCIDS). IEEE; 2019.

    Google Scholar 

  74. Zhang Z, Li Y, Li L, Li Z, Liu S, editors. Multiple linear regression for high efficiency video intra coding. In: ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2019.

    Google Scholar 

  75. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.

    Article  PubMed  Google Scholar 

  76. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

    Article  CAS  PubMed  Google Scholar 

  77. Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv e-prints. 2014 Jun:arXiv-1406.

    Google Scholar 

  78. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Communications of the ACM. 2020;63(11):139–44.

    Google Scholar 

  79. Luc P, Couprie C, Chintala S, Verbeek J. Semantic Segmentation using Adversarial Networks. arXiv e-prints. 2016 Nov:arXiv-1611.

    Google Scholar 

  80. Savioli N, Silva Vieira M, Lamata P, Montana G. A Generative Adversarial Model for Right Ventricle Segmentation. arXiv eprints. 2018 Sep:arXiv-1810.

    Google Scholar 

  81. Ronneberger O, Fischer P, Brox T, editors. U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2015.

    Google Scholar 

  82. Goodfellow I, Bengio Y, Courville A. Deep learning. London: MIT Press; 2016.

    Google Scholar 

  83. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv e-prints. 2016 Mar:arXiv-1603.

    Google Scholar 

  84. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8026–37.

    Google Scholar 

  85. Raina R, Madhavan A, Ng AY. Large-scale deep unsupervised learning using graphics processors. InProceedings of the 26th annual international conference on machine learning 2009;873–80.

    Google Scholar 

  86. Ardagna CA, Asal R, Damiani E, Vu QH. From security to assurance in the cloud: A survey. ACM Computing Surveys (CSUR). 2015;48(1):1–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Motamedian, S.R. et al. (2023). Brief Introduction to Artificial Intelligence and Machine Learning. In: Khojasteh, A., Ayoub, A.F., Nadjmi, N. (eds) Emerging Technologies in Oral and Maxillofacial Surgery . Springer, Singapore. https://doi.org/10.1007/978-981-19-8602-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8602-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8601-7

  • Online ISBN: 978-981-19-8602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics