Skip to main content

Digitally Assisted Orthognathic Surgical Planning: Definition, History, and Innovation

  • Chapter
  • First Online:
Emerging Technologies in Oral and Maxillofacial Surgery

Abstract

Management of dentofacial deformities requires comprehensive preparation and treatment planning. This chapter provides an overview of the recent advances in orthognathic surgery. Despite there is no profound change in orthognathic surgical techniques, orthognathic workup and surgical guides have undergone substantial advances, which improved overall surgical outcomes. This chapter will describe step-by-step the state-of-the-art three-dimensional digital planning orthognathic surgery in detail, starting from image acquisition to splint fabrication. Also, it covers both traditional and contemporary (virtual) surgical prediction planning. Recent advances and innovative technologies in orthognathic surgery will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker F, Ayoub AF, Moos KF, Barbenel J. Face bow and articulator for planning orthognathic surgery: 1 face bow. Br J Oral Maxillofac Surg. 2008;46:567–72.

    Article  PubMed  Google Scholar 

  2. Ayoub AF, et al. A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models. Int J Oral Maxillofac Surg. 2014;43:454–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ellis E III, Tharanon W, Gambrell K. Accuracy of face-bow transfer: effect on surgical prediction and postsurgical result. J Oral Maxillofac Surg. 1992;50:562–7.

    Article  PubMed  Google Scholar 

  4. Walker F, Ayoub AF, Moos KF, Barbenel J. Face bow and articulator for planning orthognathic surgery: 2 articulator. Br J Oral Maxillofac Surg. 2008;46:573–8.

    Article  PubMed  Google Scholar 

  5. Gateno J, Xia JJ, Teichgraeber JF. Effect of facial asymmetry on 2-dimensional and 3-dimensional cephalometric measurements. J Oral Maxillofac Surg. 2011;69:655–62.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barbenel JC, et al. Errors in orthognathic surgery planning: the effect of inaccurate study model orientation. Int J Oral Maxillofac Surg. 2010;39:1103–8.

    Article  CAS  PubMed  Google Scholar 

  7. Quast A, et al. Traditional face-bow transfer versus three-dimensional virtual reconstruction in orthognathic surgery. Int J Oral Maxillofac Surg. 2019;48:347–54.

    Article  CAS  PubMed  Google Scholar 

  8. Franz L, Isola M, Bagatto D, Tuniz F, Robiony M. A novel approach to skull-base and orbital osteotomies through virtual planning and navigation. Laryngoscope. 2019;129:823–31.

    Article  PubMed  Google Scholar 

  9. Tetsworth K, Block S, Glatt V. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects. SICOT J. 2017;3:16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mishra A, et al. Virtual preoperative planning and 3D printing are valuable for the management of complex orthopaedic trauma. Chin J Traumatol. 2019;22:350–5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mendez BM, Chiodo MV, Patel PA. Customized “in-office” three-dimensional printing for virtual surgical planning in craniofacial surgery. J Craniofac Surg. 2015;26:1584–6.

    Article  PubMed  Google Scholar 

  12. Elshebiny T, Bous R, Withana T, Morcos S, Valiathan M. Accuracy of three-dimensional upper airway prediction in orthognathic patients using dolphin three-dimensional software. J Craniofac Surg. 2020;31:1098–100.

    Article  PubMed  Google Scholar 

  13. Donaldson CD, Manisali M, Naini FB. Three-dimensional virtual surgical planning (3D-VSP) in orthognathic surgery: advantages, disadvantages and pitfalls. J Orthod. 2021;48:52–63.

    Article  PubMed  Google Scholar 

  14. Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4-and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol. 2004;33:83–6.

    Article  CAS  PubMed  Google Scholar 

  15. O’neil, M., et al. Validation of a new method for building a three-dimensional physical model of the skull and dentition. Br J Oral Maxillofac Surg. 2012;50:49–54.

    Article  PubMed  Google Scholar 

  16. Almutairi T, et al. Replacement of the distorted dentition of the cone-beam computed tomography scans for orthognathic surgery planning. J Oral Maxillofac Surg. 2018;76:1561–e1.

    Article  Google Scholar 

  17. Renne W, et al. Evaluation of the accuracy of 7 digital scanners: an in vitro analysis based on 3-dimensional comparisons. J Prosthet Dent. 2017;118:36–42.

    Article  PubMed  Google Scholar 

  18. Petrides G, Clark JR, Low H, Lovell N, Eviston TJ. Three-dimensional scanners for soft-tissue facial assessment in clinical practice. J Plast Reconstr Aesthet Surg. 2021;74:605–14.

    Article  PubMed  Google Scholar 

  19. Mundluru T, Almukhtar A, Ju X, Ayoub A. The accuracy of three-dimensional prediction of soft tissue changes following the surgical correction of facial asymmetry: an innovative concept. Int J Oral Maxillofac Surg. 2017;46:1517–24.

    Article  CAS  PubMed  Google Scholar 

  20. Shafi MI, Ayoub A, Ju X, Khambay B. The accuracy of three-dimensional prediction planning for the surgical correction of facial deformities using Maxilim. Int J Oral Maxillofac Surg. 2013;42:801–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hertanto M, Ayoub AF, Benington PCM, Naudi KB, McKenzie PS. Orthognathic patient perception of 3D facial soft tissue prediction planning. J Craniomaxillofac Surg. 2021;49:783–8.

    Article  PubMed  Google Scholar 

  22. Ho C-T, Lin H-H, Liou EJW, Lo L-J. Three-dimensional surgical simulation improves the planning for correction of facial prognathism and asymmetry: a qualitative and quantitative study. Sci Rep. 2017;7:1–10.

    Google Scholar 

  23. Hsu SS-P, et al. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg. 2013;71:128–42.

    Article  PubMed  Google Scholar 

  24. Zhang N, et al. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122:143–51.

    Article  PubMed  Google Scholar 

  25. Wu W, et al. Haptic simulation framework for determining virtual dental occlusion. Int J Comput Assist Radiol Surg. 2017;12:595–606.

    Article  PubMed  Google Scholar 

  26. Nadjmi N, et al. Virtual occlusion in planning orthognathic surgical procedures. Int J Oral Maxillofac Surg. 2010;39:457–62.

    Article  CAS  PubMed  Google Scholar 

  27. Baan F, et al. Virtual occlusion in orthognathic surgery. Int J Oral Maxillofac Surg. 2021;50:1219–25.

    Article  CAS  PubMed  Google Scholar 

  28. Kraeima J, Jansma J, Schepers RH. Splintless surgery: does patient-specific CAD-CAM osteosynthesis improve accuracy of Le fort I osteotomy? Br J Oral Maxillofac Surg. 2016;54:1085–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bai S, et al. CAD/CAM surface templates as an alternative to the intermediate wafer in orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:e1–7.

    Article  PubMed  Google Scholar 

  30. Williams A, Walker K, Hughes D, Goodson AMC, Mustafa SF. Accuracy and cost effectiveness of a waferless osteotomy approach, using patient specific guides and plates in orthognathic surgery: a systematic review. Br J Oral Maxillofac Surg. 2021;60(5):537–46.

    Article  PubMed  Google Scholar 

  31. Burt DE. Virtual reality in anaesthesia. Br J Anaesth. 1995;75:472–80.

    Article  CAS  PubMed  Google Scholar 

  32. Feiner SK. Augmented reality: a new way of seeing. Sci Am. 2002;286:48–55.

    Article  PubMed  Google Scholar 

  33. Joda T, Gallucci GO, Wismeijer D, Zitzmann NU. Augmented and virtual reality in dental medicine: a systematic review. Comput Biol Med. 2019;108:93–100.

    Article  CAS  PubMed  Google Scholar 

  34. Mehrotra D, Markus AF. Emerging simulation technologies in global craniofacial surgical training. J Oral Biol Craniofac Res. 2021;11:486.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pulijala Y, Ma M, Ayoub A. VR surgery: interactive virtual reality application for training oral and maxillofacial surgeons using oculus rift and leap motion. In: Serious games and edutainment applications. Cham: Springer; 2017. p. 187–202.

    Chapter  Google Scholar 

  36. Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training—a randomized control trial. J Oral Maxillofac Surg. 2018;76:1065–72.

    Article  PubMed  Google Scholar 

  37. Ricciardi F, Copelli C, De Paolis LT. An augmented reality system for maxillo-facial surgery. In: International conference on augmented reality, virtual reality and computer graphics. Cham: Springer; 2017. p. 53–62.

    Chapter  Google Scholar 

  38. Anand M, Panwar S. Role of navigation in oral and maxillofacial surgery: a surgeon’s perspectives. Clin Cosmet Investig Dent. 2021;13:127.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mandelaris GA, Stefanelli LV, DeGroot BS. Dynamic navigation for surgical implant placement: overview of technology, key concepts, and a case report. Compend Contin Educ Dent. 2018;39:614–21.

    PubMed  Google Scholar 

  40. Järvinen S, Suojanen J, Suomalainen A, Stoor P. Virtual surgical planning combined with intraoperative navigation in mandibular bilateral sagittal split osteotomy for accurate placement of patient specific implants. J Craniofac Surg. 2021;32:2666–70.

    Article  PubMed  Google Scholar 

  41. Hwang Y-E, Kang S-H, Kim H-K. Errors according to the number of registered markers used in navigation-assisted surgery of the mandible. Head Face Med. 2019;15:1–10.

    Article  CAS  Google Scholar 

  42. Kim S-H, et al. Quantitative augmented reality-assisted free-hand orthognathic surgery using electromagnetic tracking and skin-attached dynamic reference. J Craniofac Surg. 2020;31:2175–81.

    Article  PubMed  Google Scholar 

  43. Mazzoni S, et al. Simulation-guided navigation: a new approach to improve intraoperative three-dimensional reproducibility during orthognathic surgery. J Craniofac Surg. 2010;21:1698–705.

    Article  PubMed  Google Scholar 

  44. Badiali G, et al. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. J Craniomaxillofac Surg. 2014;42:1970–6.

    Article  PubMed  Google Scholar 

  45. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35:153–60.

    Article  CAS  PubMed  Google Scholar 

  46. Lin L, et al. Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms—a feasibility study. J Craniomaxillofac Surg. 2016;44:215–23.

    Article  PubMed  Google Scholar 

  47. Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP® and ZEUS® to da Vinci®. J Visc Surg. 2011;5:e3–8.

    Article  Google Scholar 

  48. Han JJ, Woo S-Y, Yi W-J, Hwang SJ. A robot arm and image-guided navigation assisted surgical system for maxillary repositioning in orthognathic surgery: a phantom skull-based trial. Appl Sci. 2020;10:1549.

    Article  Google Scholar 

  49. Han JJ, Woo S-Y, Yi W-J, Hwang SJ. Robot-assisted maxillary positioning in orthognathic surgery: a feasibility and accuracy evaluation. J Clin Med. 2021;10:2596.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu H-H, Li L-J, Shi B, Xu C-W, Luo E. Robotic surgical systems in maxillofacial surgery: a review. Int J Oral Sci. 2017;9:63–73.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf F. Ayoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

AlOtaibi, N.M., Ayoub, A.F. (2023). Digitally Assisted Orthognathic Surgical Planning: Definition, History, and Innovation. In: Khojasteh, A., Ayoub, A.F., Nadjmi, N. (eds) Emerging Technologies in Oral and Maxillofacial Surgery . Springer, Singapore. https://doi.org/10.1007/978-981-19-8602-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8602-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8601-7

  • Online ISBN: 978-981-19-8602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics