Skip to main content

Correlation Versus RMSE Loss Functions in Symbolic Regression Tasks

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XIX

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 348 Accesses

Abstract

The use of correlation as a fitness function is explored in symbolic regression tasks and its performance is compared against a more typical RMSE fitness function. Using correlation with an alignment step to conclude the evolution led to significant performance gains over RMSE as a fitness function. Employing correlation as a fitness function led to solutions being found in fewer generations compared to RMSE. We also found that fewer data points were needed in a training set to discover correct equations. The Feynman Symbolic Regression Benchmark as well as several other old and recent GP benchmark problems were used to evaluate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koza, J.R.: Genetic Programming: On the Programming of Computers By Means Of Natural Selection. MIT Press, Cambridge, MA (1992)

    Google Scholar 

  2. Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., Francone, Frank: Genetic Programming-An Introduction. Morgan Kaufmann Publishers, San Francisco, CA (1998)

    Book  MATH  Google Scholar 

  3. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans. Evol. Comput. 15(4), 515–538 (2011)

    Google Scholar 

  4. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.: Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol. Comput. 22(3), 415–432 (2017)

    Google Scholar 

  5. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming-Modern Concepts and Practical Applications. CRC Press/Taylor & Francis, New York, NY (2009)

    Book  MATH  Google Scholar 

  6. Udrescu, S.-M., Tegmark, M.: A physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020)

    Google Scholar 

  7. Livadiotis, G., McComas, D.J.: Fitting method based on correlation maximization: applications in space physics. J. Geophys. Res. Space Phys. 118, 2863–2875 (2013)

    Article  Google Scholar 

  8. Livadiotis, G.: General fitting methods based on \(l_q\) norms and their optimization. Stats 3, 16–31 (2020)

    Article  Google Scholar 

  9. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: European Conference on Genetic Programming, pp. 70–82. Springer (2003)

    Google Scholar 

  10. Nicolau, M., McDermott, J.: Genetic programming symbolic regression: What is the prior on the prediction? In: Banzhaf, W., Goodman, E., Sheneman, L., Trujillo, L., Worzel, B. (eds.) Genetic Programming Theory and Practice XVII, pp. 201–225. Springer (2020)

    Google Scholar 

  11. White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.-M., Luke, S.: Better gp benchmarks: community survey results and proposals. Genet. Program. Evol. Mach. 14(1), 3–29 (2013)

    Google Scholar 

  12. Korns, M.F.: A baseline symbolic regression algorithm. In: Genetic Programming Theory and Practice X, pp. 117–137. Springer (2013)

    Google Scholar 

  13. Korns, M.F.: Extreme accuracy in symbolic regression. In: Genetic Programming Theory and Practice XI, pp. 1–30. Springer (2014)

    Google Scholar 

  14. Korns, M.F.: Extremely accurate symbolic regression for large feature problems. In: Genetic Programming Theory and Practice XII, pp. 109–131. Springer (2015)

    Google Scholar 

  15. Vladislavleva, E.J., Smits, G.F., Hertog, D.D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2008)

    Google Scholar 

  16. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Program. Evol. Mach. 12(2), 91–119 (2011)

    Google Scholar 

  17. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 791–798 (2012)

    Google Scholar 

  18. Korns, M.F.: Large-scale, time-constrained symbolic regression. In: Genetic Programming Theory and Practice IV, pp. 299–314. Springer (2007)

    Google Scholar 

  19. Korns, M.F.: Large-scale, time-constrained symbolic regression-classification. In: Genetic Programming Theory and Practice V, pp. 53–68. Springer (2008)

    Google Scholar 

  20. Korns, M.F., Nunez, L.: Profiling symbolic regression-classification. In: Genetic Programming Theory and Practice VI, pp. 1–14. Springer (2009)

    Google Scholar 

  21. Korns, M.F.: Symbolic regression of conditional target expressions. In: Genetic Programming Theory and Practice VII, pp. 211–228. Springer (2010)

    Google Scholar 

  22. Korns, M.F.: Abstract expression grammar symbolic regression. In: Genetic Programming Theory and Practice VIII, pp. 109–128. Springer (2011)

    Google Scholar 

  23. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics, vol. 1. Basic Books, New York, NY (1963)

    MATH  Google Scholar 

  24. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics, vol. 2. Addison Wesley, Boston, MA (1963)

    MATH  Google Scholar 

  25. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison Wesley, Boston, MA (1963)

    MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by the Koza Endowment to MSU. Computer support by MSU’s iCER high-performance computing center is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Haut .

Editor information

Editors and Affiliations

8 Appendix

8 Appendix

This appendix lists all 100 AI Feynman problems and their solution using correlation and RMSE as fitness functions, for 0 and 10% noise levels at 3 data points only (Tables 4 and 5). More performance results are available online at https://tinyurl.com/stackGPGPTP.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haut, N., Banzhaf, W., Punch, B. (2023). Correlation Versus RMSE Loss Functions in Symbolic Regression Tasks. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds) Genetic Programming Theory and Practice XIX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-19-8460-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8460-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8459-4

  • Online ISBN: 978-981-19-8460-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics