Skip to main content

Introduction to Immune-Mediated Myopathies

  • Chapter
  • First Online:
Immune-Mediated Myopathies and Neuropathies
  • 592 Accesses

Abstract

Skeletal muscle is a specialized structure in the body with specific functions and is made up of myocytes and extracellular components. The extracellular component comprises the extracellular matrix (ECM), resident cells, and neurovascular bundle. The interaction between cytoskeletal proteins of the myocytes and extracellular matrix components plays a major role in normal muscle contraction. Anatomically, the ECM can be distinguished into epimysium, perimysium, and endomysium. Collagen type I is the major content of perimysial connective tissue. Type III collagen has uniform distribution in endomysium and epimysium. Type IV collagen forms the basement membrane of myocytes. Proteoglycans constitute the second most abundant ECM protein in the skeletal muscle and serve as major regulators of local homeostasis. The ECM is also the residing site for fibroblasts, adipocytes, and satellite cells. Last, but not least neurovascular bundle, a complicated structure made up of arterioles, capillaries, venules, lymphatics, and autonomic nerves are responsible for the control of muscle perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makowski L, Chaib M, Rathmell JC. Immunometabolism: from basic mechanisms to translation. Immunol Rev. 2020;295:5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  3. Kim J, DeBerardinis RJ. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 2019;30:434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell. 2000;6:683–92.

    Article  CAS  PubMed  Google Scholar 

  5. Frauwirth KA, Riley JL, Harris MH, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769–77.

    Article  CAS  PubMed  Google Scholar 

  6. Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4:13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303.

    Article  CAS  PubMed  Google Scholar 

  9. Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5:3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115:4742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolev M, Dimeloe S, Le Friec G, et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity. 2015;42:1033–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. West EE, Kunz N, Kemper C. Complement and human T cell metabolism: location, location, location. Immunol Rev. 2020;295:68–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caslin HL, Bhanot M, Bolus WR, Hasty AH. Adipose tissue macrophages: unique polarization and bioenergetics in obesity. Immunol Rev. 2020;295:101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16–23.

    Article  CAS  PubMed  Google Scholar 

  18. Flaherty SE 3rd, Grijalva A, Xu X, Ables E, Nomani A, Ferrante AW Jr. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science. 2019;363:989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hotamisligil GS. Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 2017;47:406–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hamrick MW. A role for myokines in muscle-bone interactions. Exerc Sport Sci Rev. 2011;39:43–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamrick MW. The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. Bonekey Rep. 2012;1:60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee YS, Wollam J, Olefsky JM. An integrated view of immunometabolism. Cell. 2018;172:22–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan IM, Perrard XY, Brunner G, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes. 2015;39:1607–18.

    Article  CAS  Google Scholar 

  24. Pillon NJ, Krook A. Innate immune receptors in skeletal muscle metabolism. Exp Cell Res. 2017;360:47–54.

    Article  CAS  PubMed  Google Scholar 

  25. So B, Kim HJ, Kim J, Song W. Exercise-induced myokines in health and metabolic diseases. Integr Med Res. 2014;3:172–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33:114–9.

    Article  PubMed  Google Scholar 

  27. Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214:337–46.

    Article  CAS  PubMed  Google Scholar 

  28. Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone. 2015;80:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raschke S, Eckel J. Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise. Mediat Inflamm. 2013;2013:320724.

    Article  Google Scholar 

  30. Mukund K, Subramaniam S. Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020;12:e1462.

    Article  PubMed  Google Scholar 

  31. Zhao L, Wang Q, Zhou B, Zhang L, Zhu H. The role of immune cells in the pathogenesis of idiopathic inflammatory myopathies. Aging Dis. 2021;12:247–60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bolko L, Jiang W, Tawara N, et al. The role of interferons type I, II and III in myositis: a review. Brain Pathol. 2021;31:e12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaspar, B.L. (2023). Introduction to Immune-Mediated Myopathies. In: Immune-Mediated Myopathies and Neuropathies. Springer, Singapore. https://doi.org/10.1007/978-981-19-8421-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8421-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8420-4

  • Online ISBN: 978-981-19-8421-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics