Skip to main content

Smart Sensors for AIAA

  • Chapter
  • First Online:
When AIAA Meets IEEE
  • 362 Accesses

Abstract

By using the IEEE methods, we can make the smart sensors in order to make the AIAA smarter. For example, accurate measurement of the surface temperature of the turbine blade plays an indispensable role to keep the best engine efficiency by optimizing the dynamic balance between the high temperature and the cooling effect. The smartness has two meanings: smarter way to build sensor and smarter usage of the sensor. In this chapter, we prepose a few smarter scenarios of AIAA of our TFTC and SAW smart sensors such as evaluating TBC’s temperature barrier quality, NGV cooling performance tests, evaluating various cooling holes on turbine blade, etc.. Most of such smarter uses are presented the first time since the embedded TFTC and SAW sensors are also newly developed smart sensors. The smart ways to build and test sensors will be addressed in the following two chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Versatile Affordable Advanced Turbine Engines (VAATE) Initiative: An AIAA Position Paper. AIAA, Reston, VA (2006)

    Google Scholar 

  2. Duan, F.L., Xie, Z., Ji, Z., Li, J., Liu, Z., Zou, B.: Surface temperature test using wired and thin film thermocouple on NGV’s cooling performance evaluation. In: AIAA Aviation 2020 Forum, 15–19 June 2020

    Google Scholar 

  3. Duan, F.L., Liu, S., Xie, Z., Ji, Z., Weng, H., Hu, M., Gao, J.: The various MEMS methods to build TFTC sensors for related aero-/astro-applications. In: AIAA Scitech 2021 Forum, Jan 2021. https://doi.org/10.2514/6.2021-1399

  4. Huang, M., Zang, S., Ge, B., et al.: Infrared thermal imaging measurement method of turbine blade temperature field in hot wind tunnel. J. Aerodyn. 029(011), 2679–2683 (2014). https://doi.org/10.13224/j.cnki.jasp.2014.11.019

  5. Kim, K.S., Kim, Y.J.: Experimental study on the film cooling performance at the leading edge of turbine blade using infrared thermography. Key Eng. Mater. 326/328(Pt2), 1161–1164 (2006)

    Google Scholar 

  6. Gribanov, I.: Applications and limitations of infrared thermography in turbine cooling visualization. Doctoral thesis, 9 Oct 2014. https://researchportal.bath.ac.uk/en/studentTheses/applications-and-limitations-of-infrared-thermography-in-turbine

  7. Andress, D.E.: An analytical study of thermal barrier coated first-stage blades in an F100 engine. NASA CR-135359, National Aeronautics and Space Administration (1978)

    Google Scholar 

  8. Meier, S.M., Gupta, D.K.: The evolution of thermal barrier coatings in gas turbine engine applications. Trans. ASME 116, 250–257 (1994)

    Google Scholar 

  9. Duan, F.L., Ji, Z.L., et al.: Accurate measurement of insulation temperature of thermal barrier coatings based on dual thin-film thermocouples. Aeroengine 46(5), 49–54 (2020)

    Google Scholar 

  10. Amagasa, S., Shimomura, K., Kadowaki, M., et al.: Study on the turbine vane and blade for a 1500°C class industrial gas turbine. J. Eng. Gas Turb. Power 116(3), 597–604 (1994)

    Article  Google Scholar 

  11. Colban, W., Thole, K.: Influence of hole shape on the performance of a turbine vane endwall film-cooling scheme. Int. J. Heat Fluid Flow 28(3), 341–356 (2007)

    Article  Google Scholar 

  12. Johnson, J.J.: Genetic algorithm optimization of a film cooling array on a modern turbine inlet vane. Dissertations & theses—Gradworks (2012)

    Google Scholar 

  13. Dyson, T.E., Bogard, D.G., Bradshaw, S.D.: Evaluation of CFD simulations of film cooling performance on a turbine vane including conjugate heat transfer effects. Int. J. Heat Fluid Flow 50, 279–286 (2014)

    Article  Google Scholar 

  14. Adture, P., Ell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002)

    Article  Google Scholar 

  15. Clarke, D.R., Oechsner, M., Padture, N.P.: Thermal barrier coatings for more efficient gas-turbine engines. MRS Bull. 37(10), 891–898 (2012)

    Article  Google Scholar 

  16. Xu, L., Wang, W., Gao, T., et al.: An experimental research on the cooling performance of the turbine vane with an advanced duplex-medium combined cooling. Int. J. Heat Mass Transf. 79, 72–81 (2014)

    Article  Google Scholar 

  17. Ho, C.-M., Tai, Y.-C.: Review: MEMS and its applications for flow control. J. Fluids Eng. Trans. ASME 118 (1996). https://doi.org/10.1115/1.2817778

  18. Ji, Z., Duan, F.L., et al.: Temperature distribution measurements on turbine blade surface by the aid of simple dotted Pt/PtRh thermal couple test array. In: AIAA Propulsion and Energy 2019 Forum, Indianapolis, USA, 19–22 Aug 2019

    Google Scholar 

  19. Duan, F.L., Lin, Y.: Development of accurate and robust high temperature sensor on aero-engine turbine blade surface. In: 2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum (AIAA 2018-4622)

    Google Scholar 

  20. Pittet, A.: Beat the Heat: Diffusing Gas Turbine Jet Exhaust. https://wwsef.ca/archives/2004/04repPittet.pdf

  21. Zawada, L., Ojard, G., Bouillon, E., et al.: Evaluation of ceramic matrix composite exhaust nozzle divergent seals. In: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin Li Duan .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duan, F.L. (2023). Smart Sensors for AIAA. In: When AIAA Meets IEEE. Springer, Singapore. https://doi.org/10.1007/978-981-19-8394-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8394-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8393-1

  • Online ISBN: 978-981-19-8394-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics