Skip to main content

The Electric Power—Energy and Weight

  • Chapter
  • First Online:
When AIAA Meets IEEE
  • 384 Accesses

Abstract

The aero-electric power must consider both the weight and volume in addition to the energy and power—it should be both light and small together with its high-power and long-lasting energy. In this chapter, we review the current electric power for aviation in terms of the energy/power over weight versus battery, generator and supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The energy density of H2 is 33,427 Wh/kg. The weight of the type IV 70 MPa quantum tank weighs 24 kg. The tank holds 26 L of H2. The 26 L of 70 MPa H2 weighs: 26 L * 42 g/L = 1.092 kg, the energy carried is: 1.092 kg * 33,427 Wh/kg = 36,502 Wh. The total weight (tank + H2) is 24 + 1.092 = 25.1 kg. The equivalent energy density is 36,502/25.1 = 1454 Wh/kg.

References

  1. Mekhilef, S., Saidur, R., Safari, A.: Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 16(1), 981–989 (2012). ISSN 1364-0321. https://doi.org/10.1016/j.rser.2011.09.020

  2. Fan, et al.: A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 6, 1623–1632 (2013)

    Google Scholar 

  3. Thrust-specific fuel consumption. https://en.wikipedia.org/wiki/Thrust-specific_fuel_consumption

  4. Generator Source, LLC, Brighton, Colorado. https://www.generatorsource.com/

  5. The Boeing 787 engine generators produce 230VAC power. https://www.energy.gov/sites/default/files/2014/03/f9/sofc_for_aircraft_pnnl_2012.pdf

  6. The Boeing 787 is equipped with six VSVF diesel generators for startup. https://www.youtube.com/watch?v=Sf6H8kSunRA

  7. GE’s CFM56 gas turbine fan aero-engine. https://www.vennershipley.co.uk/wp-content/uploads/2020/07/Europes_new_aviation_vision_is_electric_the_future1.pdf

  8. GE’s LM6000 gas turbine generator. https://www.geaviation.com/marine/engines/military/lm6000-engine

  9. VerdeGo Aero™. https://www.verdegoaero.com/

  10. Kobayashi, H., Hayakawa, A., Kunkuma, K.D., Somarathne, A., Okafor, E.C.: Science and technology of ammonia combustion. Proc. Combust. Inst. 37(1), 109–133 (2019). ISSN 1540-7489. https://doi.org/10.1016/j.proci.2018.09.029

  11. Salmon, N., Bañares-Alcántara, R.: Green ammonia as a spatial energy vector: a review. Sustain. Energy Fuels 5(11), 2814–2839 (2021)

    Google Scholar 

  12. Ammonia as a renewable energy transportation media. ACS Sustain. Chem. Eng. 5, 10231–10239 (2017)

    Google Scholar 

  13. MacFarlane, D.R., Cherepanov, P.V., Choi, J., Suryanto, B.H.R., Hodgetts, R.Y., Bakker, J.M., Simonov, A.N.: A roadmap to the ammonia economy. Joule 4(6), 1186–1205 (2020)

    Google Scholar 

  14. Chen, D., Li, J., Huang, H., Chen, Y., He, Z., Deng, L.: Research progress on ammonia combustion and reaction mechanism. Chem. Bull. 83(6), 508–515 (2020)

    Google Scholar 

  15. Quantum’s hydrogen cylinder general specifications. https://www.qtww.com/wp-content/uploads/2019/06/H2-Tank-Specifications-June-2019-All-Tanks-1.pdf

  16. GE’s LM6000 electric generator. https://www.geaviation.com/marine/engines/military/lm6000-engine

  17. GE’s CF700 lightweight turbofan jet engine. https://www.geaviation.com/bga/engines/cf700-engine

  18. Airbus, the E-fan all-electric twin propeller aircraft. https://www.airbus.com/search.html?q=e+fan+2.0

  19. Li, K.: Research on the application of lithium-ion batteries in electric unmanned aircraft. Aeronaut. Sci. Technol. 31(05), 1–10 (2020)

    Google Scholar 

  20. Sweden heart aerospace, ES-19. https://heartaerospace.com/

  21. Airbus, E-Fan X, complex hybrid-electric flight demonstrator disruptive technologies project. https://www.airbus.com/innovation/zero-emission/electric-flight/e-fan-x.html

  22. Li, K.: Research on the development of electric aircraft technology. Aeronaut. Sci. Technol. 30(01), 1–7 (2019)

    Google Scholar 

  23. Liu, X., Ren, D., et al.: Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2(10), 2047–2064 (2018). https://doi.org/10.1016/j.joule.2018.06.015

  24. Wang, L., et al.: Safety accidents of Li-ion batteries: reliability issues or safety issues. Energy Stor. Sci. Technol. 10(1) (2021)

    Google Scholar 

  25. Sharaf, O.Z., Orhan, M.F.: An overview of fuel cell technology: fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853 (2014). ISSN 1364-0321. https://doi.org/10.1016/j.rser.2014.01.012

  26. Baroutaji, A., Wilberforce, T., Ramadan, M., et al.: Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 106, 31–40 (2019). https://doi.org/10.1016/j.rser.2019.02.022

  27. Airbus E-fan. https://www.airbus.com/innovation/zero-emission/electric-flight.html

  28. Rolls-Royce ACCEL, 2019, Li-ion battery of 367.5 kW power for 320 km flight, weight 1200 kg. https://www.rolls-royce.com/innovation/accel.aspx

  29. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2011)

    Google Scholar 

  30. Maleki, M., Tichter, T., ElNagar, G.A., et al.: Hybrid electrospun nanofibers as electrocatalyst for vanadium redox flow batteries: theory and experiment. ChemElectroChem 8(1), 218–226 (2021). https://doi.org/10.1002/celc.202001380

  31. Trovò, A.: Battery management system for industrial-scale vanadium redox flow batteries: features and operation. J. Power Sources 465, 228229 (2020)

    Google Scholar 

  32. Papathakis, K.: Review of AQUIFER technology feasibility. In: 2020 AIAA Aviation Forum, Oral Report, 15–19 June 2020, Virtual Meeting

    Google Scholar 

  33. Skeleton Technologies, a Germany ultracapacitors company. https://www.skeletontech.com/

  34. Tecdia, a Japanese high-K ceramic capacitor. http://www.tecdia.com/

  35. Lörstad, D., Lindholm, A., Pettersson, J., et al.: Siemens SGT-800 industrial gas turbine enhanced to 50 MW: combustor design modifications, validation and operation experience. In: Turbo Expo: Power for Land, Sea, and Air, p. 55119: V01BT04A038. American Society of Mechanical Engineers (2013)

    Google Scholar 

  36. El-Suleiman, A., Samuel, O.D., Amosun, S.T., et al.: Gas turbine performance forecast and assessment: GE LM2500 in outlook. IOP Conf. Ser. Mater. Sci. Eng. 1107(1), 012025 (2021)

    Google Scholar 

  37. Day, W.H.: FT8: a high performance industrial and marine gas turbine derived from the JT8D aircraft engine. In: Turbo Expo: Power for Land, Sea, and Air, p. 79245: V002T03A005. American Society of Mechanical Engineers (1987)

    Google Scholar 

  38. Vignesh, P., et al.: Biodiesel and green diesel generation: an overview. Oil Gas Sci. Technol. 76(1), 6 (2021)

    Google Scholar 

  39. Lechniak, J.A., Salazar, M., Abbigail, W., Morello, J., Papathakis, K.: Nano-electro fuel energy economy and powered aircraft operations. In: AIAA Scitech 2020 Forum. AIAA 2020-0117, Jan 2020

    Google Scholar 

  40. GE’s aeroderivative and heavy duty gas turbine electric generators. https://www.ge.com/power/gas/gas-turbines

  41. Walsh, P.P.: Gas Turbine Performance, 2nd edn., Chap. 1.4 (2008)

    Google Scholar 

  42. Richter, E., Anstead, D., Bartos, J., Watson, T.: Preliminary Design of an Internal Starter/Generator for Application in the F110-129 Engine. SAE Technical Paper 951406 (1995). https://doi.org/10.4271/951406

  43. Andersson, F.: Integrated generator for use in aircraft engines (2018)

    Google Scholar 

  44. Ceder, G.: Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull. 35(9), 693–701 (2010)

    Article  Google Scholar 

  45. Tarascon, J.M.: Key challenges in future Li-battery research. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1923), 3227–3241 (2010)

    Article  Google Scholar 

  46. Kim, D.H., Lee, J.H., Hwang, H.Y.: Aerodynamic analysis, required power and weight estimation of a compound (tilt rotor + lift + cruise) type eVTOL for urban air mobility using reverse engineering techniques. J. Adv. Navig. Technol. 25(1), 17–28 (2021)

    Google Scholar 

  47. Liu, Y., Zhang, R., Wang, J., et al.: Current and future lithium-ion battery manufacturing. iScience 24(4), 102332 (2021)

    Article  Google Scholar 

  48. Tranter, T.G., Timms, R., Shearing, P.R., et al.: Communication—prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection. J. Electrochem. Soc. 167(16), 160544 (2020)

    Article  Google Scholar 

  49. Schwunk, S., Armbruster, N., Straub, S., et al.: Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries. J. Power Sources 239, 705–710 (2013)

    Google Scholar 

  50. Fuel cell vehicle cost analysis. http://www.hydrogen.energy.gov/pdfs/progress17/v_e_5_james_2017.pdf

  51. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)

    Article  Google Scholar 

  52. Cecere, D., Giacomazzi, E., Ingenito, A.: A review on hydrogen industrial aerospace applications. Int. J. Hydrogen Energy 39(20), 10731–10747 (2014). ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2014.04.126

  53. Bičáková, O., Straka, P.: Production of hydrogen from renewable resources and its effectiveness. Int. J. Hydrogen Energy 37(16), 11563–11578 (2012). ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2012.05.047

  54. Hydrogen production: thermochemical water splitting. Department of Energy. [Online]. Available: https://www.energy.gov/eere/fuelcells/hydrogenproduction-thermochemical-water-splitting

  55. Hwang, H.T., Varma, A.: Hydrogen storage for fuel cell vehicles. Curr. Opin. Chem. Eng. 5, 42–48 (2014)

    Google Scholar 

  56. Dornheim, M., Doppiu, S., Barkhordarian, G., Boesenberg, U., Klassen, T., Gutfleisch, O., Bormann, R.: Hydrogen storage in magnesium-based hydrides and hydride composites. Viewpoint set no. 42 Nanoscale materials for hydrogen storage. Scr. Mater. 56(10), 841–846 (2007). ISSN 1359-6462. https://doi.org/10.1016/j.scriptamat.2007.01.003

  57. Quantum fuel systems for hydrogen tanks. http://www.qtww.com/

  58. Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. In: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 265–270 (2011)

    Google Scholar 

  59. Kadyk, T., Winnefeld, C., Hanke-Rauschenbach, R., et al.: Analysis and design of fuel cell systems for aviation. Energies 11(2), 375 (2018)

    Google Scholar 

  60. Muthukumar, M., Rengarajan, N., Velliyangiri, B., et al.: The development of fuel cell electric vehicles—a review. Mater. Today Proc. 45, 1181–1187 (2021)

    Article  Google Scholar 

  61. Tehrani, Z., et al.: Large-area printed super capacitor technology for low-cost domestic green energy storage. Energy 118, 1313–1321 (2017)

    Google Scholar 

  62. Conway, B.E., Pell, W.G.: Double-layer and pseudo capacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7(9), 637–644 (2003)

    Article  Google Scholar 

  63. GE’s LM6000 gas turbine datasheet. https://www.geaviation.com/sites/default/files/datasheet-lm6000.pdf

  64. GE’s LM6000 engine. https://www.geaviation.com/marine/engines/military/lm6000-engine

  65. GE’s J85 small single-shaft turbojet engine. https://en.wikipedia.org/wiki/General_Electric_J85

  66. Wang, X., et al.: Ultra high dielectric constant, temperature stable multilayer ceramic capacitor material and its preparation method. Patent CN1397957A, Tshinghua University, 2003

    Google Scholar 

  67. Hennings, D., Klee, M., Waser, R.: Advanced dielectrics: bulk ceramics and thin films. Adv. Mater. 3(7–8), 334–340 (1991)

    Article  Google Scholar 

  68. Xia, W., Liu, Y., Wang, G., Li, J., Cao, C., Hu, Q., Chen, Y., Lu, Z., Wang, D.: Frequency and temperature independent (Nb0.5Ga0.5)x(Ti0.9Zr0.1)1-xO2 ceramics with giant dielectric permittivity and low loss. Ceram. Int. 46(3), 2954–2959 (2020). ISSN 0272-8842. https://doi.org/10.1016/j.ceramint.2019.09.292. https://www.sciencedirect.com/science/article/pii/S0272884219328287

  69. Tan, F., Zhao, H., Zhang, Q., et al.: Dielectric performance of (Pb1-xSrx)Nb2O6-NaNbO3 thin film materials system: substitution effects. Mater. Sci. Forum 898(pt.3), 1699–1704 (2017)

    Google Scholar 

  70. Pavlidis, V.F., Friedman, E.G.: 3-D Integrated Circuit Fabrication Technologies, pp. 37–63. Morgan Kaufmann (2009). ISBN: 9780123743435. https://doi.org/10.1016/B978-0-12-374343-5.00003-4

  71. Srivastava, A., Mangla, O., Gupta, V.: Study of La-incorporated HfO2 MIM structure fabricated using PLD system for analog/mixed signal applications. IEEE Trans. Nanotechnol. 14(4), 612–618 (2015)

    Article  Google Scholar 

  72. Chaker, A., Szkutnik, P.D., Pointet, J., et al.: Understanding the mechanisms of interfacial reactions during TiO2 layer growth on RuO2 by atomic layer deposition with O2 plasma or H2O as oxygen source. J. Appl. Phys. 120(8), 1–3 (2016)

    Article  Google Scholar 

  73. Neve, C.R., Detalle, M., Nolmans, P., et al.: High-density and low-leakage novel embedded 3D MIM capacitor on Si interposer. In: 3D Systems Integration Conference. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin Li Duan .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duan, F.L. (2023). The Electric Power—Energy and Weight. In: When AIAA Meets IEEE. Springer, Singapore. https://doi.org/10.1007/978-981-19-8394-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8394-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8393-1

  • Online ISBN: 978-981-19-8394-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics