Skip to main content

Sinusoidal Generator—An Attempt to Limbless Locomotion

  • Chapter
  • First Online:
Bio-Inspired Locomotion Control of Limbless Robots

Abstract

The sine-based method is verified efficient in limbless gait generation in the literature. However, more attempts were put on how to combine sinusoidal generators into a network to investigate what a limbless gait can be generated. The work on the other way around, i.e., from observation of limbless gait in nature to sinusoidal generator design, is seldom seen. Furthermore, there were few sine-based limbless locomotion applications that integrate sensory information for achieving high-level tasks. In this chapter, we present our attempts on utilizing sinusoidal generators for caterpillar-like gait generation (Li et al. 2011, 2015), and closed-loop control in an exploration task (Li et al. 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Au C, Jin P (2016) Investigation of serpentine gait of a snake robot with a wireless camera. In: 2016 12th IEEE/ASME international conference on mechatronic and embedded systems and applications (MESA). IEEE, pp 1–6

    Google Scholar 

  • Backman A (2008) Algoryx-interactive physics. In: SIGRAD 2008. The annual SIGRAD conference special theme: interaction, no 034. Linköping University Electronic Press, Stockholm, Sweden, p 87

    Google Scholar 

  • Bing Z, Cheng L, Huang K, Jiang Z, Chen G, Röhrbein F, Knoll A (2017) Towards autonomous locomotion: Slithering gait design of a snake-like robot for target observation and tracking. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 2698–2703

    Google Scholar 

  • Brackenbury J (1997) Caterpillar kinematics. Nature 390(6659):453

    Article  Google Scholar 

  • Brackenbury J (1999) Fast locomotion in caterpillars. J Insect Physiol 45(6):525–533

    Article  Google Scholar 

  • Bresson G, Alsayed Z, Yu L, Glaser S (2017) Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans Intell Veh 2(3):194–220

    Article  Google Scholar 

  • Casey TM (1991) Energetics of caterpillar locomotion: biomechanical constraints of a hydraulic skeleton. Science 252(5002):112–114

    Article  Google Scholar 

  • Chang AH, Feng S, Zhao Y, Smith JS, Vela PA (2019) Autonomous, monocular, vision-based snake robot navigation and traversal of cluttered environments using rectilinear gait motion. arXiv:1908.07101

  • Erkmen I, Erkmen AM, Matsuno F, Chatterjee R, Kamegawa T (2002) Snake robots to the rescue! IEEE Robot Autom Mag 9(3):17–25

    Article  Google Scholar 

  • Ferro M, Paolillo A, Cherubini A, Vendittelli M (2019) Vision-based navigation of omnidirectional mobile robots. IEEE Robot Autom Lett 4(3):2691–2698

    Article  Google Scholar 

  • Gonzalez-Gomez J, Zhang H, Boemo E (2007) Locomotion principles of 1d topology pitch and pitch-yaw-connecting modular robots. In: Habib MK (ed) Bioinspiration and robotics, ch. 24. IntechOpen, Rijeka

    Google Scholar 

  • Granosik G, Hansen MG, Borenstein J (2005) The OmniTread serpentine robot for industrial inspection and surveillance. Ind Robot: Int J 32(2):139–148

    Article  Google Scholar 

  • LaValle SM (2006) Planning algorithms. Cambridge University Press

    Google Scholar 

  • Li G, Li W, Zhang J, Zhang H (2015) Analysis and design of asymmetric oscillation for caterpillar-like locomotion. J Bionic Eng 12(2):190–203

    Article  Google Scholar 

  • Li G, Waldum HB, Grindvik MO, Jørundl RS, Zhang H (2020) Development of a vision-based target exploration system for snake-like robots in structured environments. Int J Adv Robot Syst 17(4):1729881420936141

    Article  Google Scholar 

  • Lin HT, Trimmer BA (2010) The substrate as a skeleton: ground reaction forces from a soft-bodied legged animal. J Exp Biol 213(7):1133–1142

    Article  Google Scholar 

  • Li G, Zhang H, Herrero-Carrón F, Herrero-Carrón F, Hildre HP, Zhang J (2011) A novel mechanism for caterpillar-like locomotion using asymmetric oscillation. In: 2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE, pp 164–169

    Google Scholar 

  • Marbach D, Ijspeert AJ (2005) Online optimization of modular robot locomotion. In: IEEE International Conference Mechatronics and Automation, vol 1. IEEE, pp 248–253

    Google Scholar 

  • Mutlu M, Melo K, Vespignani M, Bernardino A, Ijspeert AJ (2015) Where to place cameras on a snake robot: focus on camera trajectory and motion blur. In: 2015 IEEE international symposium on safety, security, and rescue robotics (SSRR). IEEE, pp 1–8

    Google Scholar 

  • Omisore OM, Han S, Ren L, Zhao Z, Al-Handarish Y, Igbe T, Wang L (2018) A teleoperated snake-like robot for minimally invasive radiosurgery of gastrointestinal tumors. In: 2018 IEEE international conference on autonomous robot systems and competitions (ICARSC). IEEE, pp 123–129

    Google Scholar 

  • Ponte H, Queenan M, Gong C, Mertz C, Travers M, Enner F, Hebert M, Choset H (2014) Visual sensing for developing autonomous behavior in snake robots. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2779–2784

    Google Scholar 

  • Rollinson D, Bilgen Y, Brown B, Enner F, Ford S, Layton C, Rembisz J, Schwerin M, Willig A, Velagapudi P, Choset H (2014) Design and architecture of a series elastic snake robot. In: 2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 4630–4636

    Google Scholar 

  • Sakai A, Ingram D, Dinius J, Chawla K, Raffin A, Paques A (2018) Pythonrobotics: a python code collection of robotics algorithms

    Google Scholar 

  • Segarra D, Caballeros J, Aguilar WG (2018) Visual based autonomous navigation for legged robots. In: International conference on intelligent science and big data engineering. Springer, pp 22–34

    Google Scholar 

  • Selvarajan A, Kumar A, Sethu D, Bin Ramlan MA (2019) Design and development of a snake-robot for pipeline inspection. In: 2019 IEEE student conference on research and development (SCOReD). IEEE, pp 237–242

    Google Scholar 

  • Smith R (2008) Open dynamics engine. http://www.ode.org/

  • Trebuňa F, Virgala I, Pástor M, Lipták T, Miková L (2016) An inspection of pipe by snake robot. Int J Adv Robot Syst 13(5):1729881416663668

    Article  Google Scholar 

  • Trimmer B, Issberner J (2007) Kinematics of soft-bodied, legged locomotion in manduca sexta larvae. Biol Bull 212(2):130–142

    Article  Google Scholar 

  • Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5(3):99–117

    Article  Google Scholar 

  • Tzafestas SG (2013) Introduction to mobile robot control. Elsevier

    Google Scholar 

  • van Griethuijsen LI, Trimmer BA (2009) Kinematics of horizontal and vertical caterpillar crawling. J Exp Biol 212(10):1455–1462

    Article  Google Scholar 

  • Wei W, Yu-cheng B, Gong-ping W, Shui-xia L, Qian C (2013) The mechanism of a snake-like robot’s clamping obstacle navigation on high voltage transmission lines. Int J Adv Robot Syst 10(9):330

    Article  Google Scholar 

  • Zhang H, Gonzalez-Gomez J, Me Z, Cheng S, Zhang J (2008) Development of a low-cost flexible modular robot GZ-I. In: 2008 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 223–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyuan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G., Zhang, H., Zhang, J. (2023). Sinusoidal Generator—An Attempt to Limbless Locomotion. In: Bio-Inspired Locomotion Control of Limbless Robots. Springer, Singapore. https://doi.org/10.1007/978-981-19-8384-9_3

Download citation

Publish with us

Policies and ethics