Skip to main content

Overview of Limbless Robots

  • Chapter
  • First Online:
Bio-Inspired Locomotion Control of Limbless Robots

Abstract

Limbless robots have become a hot topic in the last few decades. Despite their significant advantages and potential applications as described in Chap. 1, there are always unexpected challenges when developing a limbless robot, such as lack of propulsion, unstable gaits, and poor payload capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai M, Tanaka Y, Hirose S, Kuwahara H, Tsukui S (2008) Development of “SOURYU-IV” and “SOURYU-V”: serially connected crawler vehicles for in-rubble searching operations. J Field Robot 25:31–65

    Google Scholar 

  • Borenstein J, Granosik G, Hansen M (2005) The OmniTread serpentine robot—Design and field performance. In: Proceedings of the SPIE defense and security conference, unmanned ground vehicle technology VII, Orlando, FL, pp 324–332

    Google Scholar 

  • Borenstein J, Hansen M (2007a) OmniTread OT-4 serpentine robot—New features and experiments. In: Proceedings of the SPIE defense and security conference, unmanned systems technology IX, Orlando, FL

    Google Scholar 

  • Borenstein J, Hansen M, Borrell A (2007b) The OmniTread OT-4 serpentine robot-design and performance: field reports. J Field Robot 24:601–621

    Google Scholar 

  • Castano A, Shen W-M, Will P (2000) CONRO: towards deployable robots with inter-robots metamorphic capabilities. Auton Robot 8:309–324

    Google Scholar 

  • Chirikjian G, Burdick J (1995) The kinematics of hyper-redundant robot locomotion. IEEE Trans Robot Autom 11:781–793

    Google Scholar 

  • Crespi A, Badertscher A, Guignard A, Ijspeert AJ (2004) An amphibious robot capable of snake and lamprey-like locomotion. In: Proceedings of the 35th international symposium on robotics

    Google Scholar 

  • Crespi A, Badertscher A, Guignard A, Ijspeert AJ (2005a) AmphiBot I: an amphibious snake-like robot. Robot Auton Syst 50(4):163–175

    Article  Google Scholar 

  • Crespi A, Badertscher A, Guignard A, Ijspeert AJ (2005b) Swimming and crawling with an amphibious snake robot. In: Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), Barcelona, Spain, pp 3024–3028

    Google Scholar 

  • Crespi A, Ijspeert AJ (2006) AmphiBot II: an amphibious snake robot that crawls and swims using a central pattern generator. In: Proceedings of the 9th international conference on climbing and walking robots (CLAWAR 2006), Brussels, Belgium, pp 19–27

    Google Scholar 

  • Dowling KJ (1997) Limbless locomotion: learning to crawl with a snake robot. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  • Duff DG, Yim MH, Roufas KD (2001) Evolution of polybot: a modular reconfigurable robot. In: Proceedings of COE/super-mechano-systems workshop, Tokyo, Japan

    Google Scholar 

  • Endo G, Togawa K, Hirose S (1999) Study on self-contained and terrain adaptive active cord mechanism. In: Proceedings of the 1999 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 3, pp 1399–1405

    Google Scholar 

  • Gonzalez-Gomez J, Zhang H, Boemo E (2007a) Locomotion principles of 1d topology pitch and pitch-yaw-connecting modular robots. In: Bioinspiration and robotics: walking and climbing robots, pp 403–428. Advanced Robotic Systems International and I-Tech Education and Publishing, Vienna, Austria

    Google Scholar 

  • Gonzalez-Gomez J, Zhang H, Boemo E (2007b) Locomotion principles of 1d topology pitch and pitch-yaw-connecting modular robots. In: Habib MK (ed) Bioinspiration and robotics, ch. 24. IntechOpen, Rijeka

    Google Scholar 

  • Granosik G, Hansen MG, Borenstein J (2005) The OmniTread serpentine robot for industrial inspection and surveillance. Ind Robot-Int J 32:139–148

    Article  Google Scholar 

  • Gray J (1946) The mechanism of locomotion in snakes. J Exp Biol 23(2):101–120

    Article  Google Scholar 

  • Hatton RL, Choset H (2010) Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction. Auton Robot 28:271–281

    Article  Google Scholar 

  • Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford science publications, Oxford University Press

    Google Scholar 

  • Hirose S, Morishima A (1990) Design and control of a mobile robot with an articulated body. Int J Robot Res 9:99–114

    Article  Google Scholar 

  • Hirose S, Yamada H (2009) Snake-like robots. Robot Autom Mag IEEE 16:88–98

    Article  Google Scholar 

  • Hirose S, Endo G (1997) Development of autonomous snake-like robot ACM R-1. In: Proceedings of the 1997 annual conference on robotics and mechatronics, pp 309–310 (in Japanese)

    Google Scholar 

  • Hirose S, Morishima A, Tukagosi S, Tsumaki T, Monobe H (1991) Design of practical snake vehicle: articulated body mobile robot KR-II. In: Proceedings of the 5th international conference on advanced robotics, vol 1, pp 833–838

    Google Scholar 

  • Ijspeert AJ, Crespi A (2007) Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In: Proceeding of 2007 IEEE international conference on robotics and automation (ICRA), Roma, Italy, pp 262–268

    Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  Google Scholar 

  • Johnson A, Wright C, Tesch M, Lipkin K, Choset H (2011) A novel architecture for modular snake robots. Tech. Rep., Robotics Institute

    Google Scholar 

  • Kamimura A, Kurokawa H, Yoshida E, Tomita K, Murata S, Kokaji S (2003) Automatic locomotion pattern generation for modular robots. In: Proceedings of the 2003 IEEE international conference on robotics and automation (ICRA), pp 714–720

    Google Scholar 

  • Kamimura A, Kurokawa H, Yoshida E, Murata S, Tomita K, Kokaji S (2005) Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans Mechatron 10:314–325

    Google Scholar 

  • Khunnithiwarawat T, Maneewarn T (2011) A study of active-wheel snake robot locomotion gaits. In: Proceedings of 2011 IEEE international conference on the robotics and biomimetics (ROBIO), pp 2805–2809

    Google Scholar 

  • Kim B, Lee MG, Lee YP, Kim Y, Lee G (2006) An earthworm-like micro robot using shape memory alloy actuator. Sens Actuat A: Phys 125(2):429–437

    Article  Google Scholar 

  • Kimura H, Hirose S (2002) Development of GENBU: active wheel passive joint articulated mobile robot. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 1, pp 823–828

    Google Scholar 

  • Klaassen B, Paap KL (1999) GMD-SNAKE2: a snake-like robot driven by wheels and a method for motion control. In: Proceeding of 1999 IEEE international conference on robotics and automation (ICRA), vol 4, pp 3014–3019

    Google Scholar 

  • Kurokawa H, Kamimura A, Yoshida E, Tomita K, Kokaji S (2003) M-TRAN II: metamorphosis from a four-legged walker to a caterpillar. In: Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2454–2459

    Google Scholar 

  • Kurokawa H, Tomita K, Kamimura A, Kokaji S, Hasuo T, Murata S (2008) Distributed self-reconfiguration of M-TRAN III modular robotic system. Int J Robot Res 27:373–386

    Google Scholar 

  • Liljeback P, Pettersen KY, Stavdahl O, Gravdahl JT (2011) Experimental investigation of obstacle-aided locomotion with a snake robot. IEEE Trans Robot 27(4):792–800

    Article  MATH  Google Scholar 

  • Liljeback P, Pettersen KY, Stavdahl, O Gravdahl JT (2012a) Snake Robots: modelling, mechatronics, and control. Adv Ind Control (Springer)

    Google Scholar 

  • Liljeback P, Pettersen KY, Stavdahl O, Gravdahl JT (2012b) Snake robot locomotion in environments with obstacles. IEEE/ASME Trans Mechatron 17:1158 –1169

    Google Scholar 

  • Ma S (1999) Analysis of snake movement forms for realization of snake-like robots. In: Proceeding of 1999 IEEE international conference on robotics and automation (ICRA), vol 4, pp 3007–3013

    Google Scholar 

  • Ma S, Araya H, Li L (2001) Development of a creeping snake-robot. In: Proceedings of the IEEE international symposium on computational intelligence in robotics and automation, pp 77–82

    Google Scholar 

  • Ma S, Ohmameuda Y, Inoue K, Li B (2003) Control of a 3-dimensional snake-like robot. In: Proceeding of 2003 IEEE international conference on robotics and automation (ICRA), vol 2, pp 2067–2072

    Google Scholar 

  • Masayuki A, Takayama T, Hirose S (2004) Development of “SOURYU-III”: connected crawler vehicle for inspection inside narrow and winding spaces. In: Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

  • McIsaac K, Ostrowski J (2003) Motion planning for anguilliform locomotion. IEEE Trans Robot Autom 19:637–652

    Google Scholar 

  • Menciassi A, Gorini S, Pernorio G, Weiting L, Valvo F, Dario F (2004) Design, fabrication and performances of a biomimetic robotic earthworm. In: Proceedings of 2004 IEEE international conference on the robotics and biomimetics (ROBIO), pp 274–278

    Google Scholar 

  • Miller G (2002) Snake robots for search and rescue. In: Neurotechnology for biomimetic robots, pp 271–284

    Google Scholar 

  • Mondada F, Guignard A, Bonani M, Bar D, Lauria M, Floreano D (2003) Swarm-bot: from concept to implementation. In: Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1626–1631

    Google Scholar 

  • Mondada F, Pettinaro GC, Guignard A, Kwee IW, Floreano D, Deneubourg J-L, Nolfi S, Gambardella LM, Dorigo M (2004) Swarm-bot: a new distributed robotic concept. Auton Robot 17:193–221

    Article  Google Scholar 

  • Mori M, Hirose S (2002) Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 1, pp 829–834

    Google Scholar 

  • Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S (2002) M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans Mechatron 7:431–441

    Google Scholar 

  • Ohno H, Hirose S (2001) Design of slim slime robot and its gait of locomotion. In: Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 2, pp 707–715

    Google Scholar 

  • Osuka K (2003) Development of four-crawler multilink mobile robot MOIRA for searching debris. J Robot Mechatron 15:561–570

    Article  Google Scholar 

  • Rome E, Hertzberg J, Kirchner F, Licht U, Christaller T (1999) Towards autonomous sewer robots: the MAKRO project. Urban Water 1(1):57–70

    Article  Google Scholar 

  • Rus D, Vona M (2000) A basis for self-reconfiguring robots using crystal modules. In: Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 3, pp 2194–2202

    Google Scholar 

  • Rus D, Vona M (2001) Crystalline robots: self-reconfiguration with compressible unit modules. Auton Robot 10(1):107–124

    Article  MATH  Google Scholar 

  • Saito M, Fukaya M, Iwasaki T (2002) Modeling, analysis, and synthesis of serpentine locomotion with a multilink robotic snake. IEEE Contr Syst Mag 22:64–81

    Article  Google Scholar 

  • Seok S, Onal CD, Cho K-J, Wood RJ, Rus D, Kim S (2012) Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans Mechatron PP(99):1–13

    Google Scholar 

  • Streich H, Adria O (2004) Software approach for the autonomous inspection robot MAKRO. In: Proceeding of 2004 IEEE international conference on robotics and automation (ICRA), vol 4, pp 3411–3416

    Google Scholar 

  • Suh J, Homans S, Yim M (2002) Telecubes: mechanical design of a module for self-reconfigurable robotics. In: Proceeding of 2002 IEEE international conference on robotics and automation (ICRA), vol 4, pp 4095–4101

    Google Scholar 

  • Takayama T, Hirose S (2000) Development of SOURYU-I connected crawler vehicle for inspection of narrow and winding space. In: Proceeding of the 26th annual conference of the IEEE industrial electronics society (IECON)

    Google Scholar 

  • Takayama T, Hirose S (2003) Development of “SOURYU I and II’’-connected crawler vehicle for inspection of narrow and winding space. J Exp Biol 15(1):61–69

    Google Scholar 

  • Tesch M, Lipkin K, Brown I, Hatton RL, Peck A, Rembisz J, Choset H (2009) Parameterized and scripted gaits for modular snake robots. Adv Robot 23(9):1131–1158

    Article  Google Scholar 

  • Togawa K, Mori M, Hirose S (2000) Study on three-dimensional active cord mechanism: development of ACM-R2. In: Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS), Takamatsu, Japan, pp 2242–2247

    Google Scholar 

  • Transeth AA, Leine RI, Glocker C, Pettersen KY, Liljeback P (2008a) Snake robot obstacle-aided locomotion: modeling, simulations, and experiments. IEEE Trans Robot 24:88–104

    Article  Google Scholar 

  • Transeth A, Leine R, Glocker C, Pettersen K (2008b) 3D snake robot motion: non-smooth modeling, simulations, and experiments. IEEE Trans Robot 24:361–376

    Article  Google Scholar 

  • Wright C, Buchan A, Brown B, Geist J, Schwerin M, Rollinson D, Tesch M, Choset H (2012) Design and architecture of the unified modular snake robot. In: Proceeding of 2012 IEEE international conference on robotics and automation (ICRA), pp 4347–4354

    Google Scholar 

  • Wright C, Johnson A, Peck A, McCord Z, Naaktgeboren A, Gianfortoni P, Gonzalez-Rivero M, Hatton R, Choset H (2007) Design of a modular snake robot. In: Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems (IROS), San Diego, CA, USA

    Google Scholar 

  • Yamada H, Hirose S (2006) Development of practical 3-dimensional active cord mechanism ACM-R4. J Robot Mechatron 18(3):305–311

    Article  Google Scholar 

  • Yamada H, Chigisaki S, Mori M, Takita K, Ogami K, Hirose S (2005) Development of amphibious snake-like robot ACM-R5. In: Proceedings of 36th international symposium on robotics, vol 1

    Google Scholar 

  • Yim M (1994) Locomotion with unit-modular reconfigurable robot. Ph.D. thesis. Stanford University, Stanford, CA, USA

    Google Scholar 

  • Yim M, Duff D, Roufas K (2000) Polybot: a modular reconfigurable robot. In: Proceeding of 2000 IEEE international conference on robotics and automation (ICRA), vol 1, pp 514–520

    Google Scholar 

  • Yim M, Homans S, Roufas K (2001) Climbing with snake-like robots. In: Proceedings of the IFAC workshop on mobile robot technology, Jejudo, Korea

    Google Scholar 

  • Zhang H, Wang W, Deng Z, Zong G, Zhang J (2006) A novel reconfigurable robot for urban search and rescue. Int J Adv Robot Syst 3(4):359–366

    Article  Google Scholar 

  • Zhang H, Gonzalez-Gomez J, Me Z, Cheng S, Zhang J (2008) Development of a low-cost flexible modular robot GZ-I. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, pp 223–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyuan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G., Zhang, H., Zhang, J. (2023). Overview of Limbless Robots. In: Bio-Inspired Locomotion Control of Limbless Robots. Springer, Singapore. https://doi.org/10.1007/978-981-19-8384-9_2

Download citation

Publish with us

Policies and ethics