Skip to main content

Nematophagous Fungi: Biology, Ecology and Potential Application

  • Chapter
  • First Online:
Detection, Diagnosis and Management of Soil-borne Phytopathogens

Abstract

Nematodes and fungi are soil inhabitants. Both are essential for maintaining the stability of food-web and facilitation of the nutrient cycle. Interaction between nematodes and fungi is possible in multiple ways. Here, we supply a platform for nematophagous (nematode destroying) fungi (NF), their mode of action, and their importance in agricultural ecosystems. They are potentially important for sustainable agriculture and play a major role in integrated pest management programs. Nematophagous fungi belong to a broad taxonomic group, such as Ascomycota, Oomycota, Basidiomycota, and distinct groups of fungi. Nematophagous fungi are broadly distributed in terrestrial and aquatic ecosystems that contain high densities of nematodes. Depending on the mechanism that affects nematode, NF can be divided into four types. Here, we described the classification, taxonomy, occurrence, distribution and ecology, types of nematophagous fungi, and potential mechanisms of NF in the control of plant-parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahman J, Ek B, Rask L, Tunlid A (1996) Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology 142:1605–1616

    Article  PubMed  Google Scholar 

  • Ahren D, Tholander M, Fekete C, Rajashekar B, Friman E, Johansson T et al (2005) Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 151:789–803

    Article  PubMed  Google Scholar 

  • Aschner M, Kohn S (1958) The biology of Harposporium anguillulae. Microbiology 19(1):182–189

    CAS  Google Scholar 

  • Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Protect 43(6):609–614

    Article  Google Scholar 

  • Baheti BL, Dodwadiya M, Bhati SS (2017) Eco-friendly management of maize cyst nematode, Heterodera zeae on sweet corn (Zea mays L. saccharata). J Entomol Zool Stud 5(6):989–993

    Google Scholar 

  • Baron CN, Souza-Pollo A, Rigobelo E (2020) Purpureocillium lilacinum and Metaehizium marquandii as plant growth-promoting fungi. Peer Rev J 8:e9005

    Article  Google Scholar 

  • Barron GL (1977) The nematode destroying fungi. Canadian Biological Publication Ltd., Guelph, p 140

    Google Scholar 

  • Barron GL (1992) Lignolytic and cellulolytic fungi as predators and parasites. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystems. Marcel Dekker, New York, pp 311–326

    Google Scholar 

  • Basse CW, Steinberg G (2004) Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5(2):83–92

    Article  PubMed  Google Scholar 

  • Bird AF, Bird J (1991) The structure of nematodes, 2nd edn. Academic, New York

    Google Scholar 

  • Bordallo JJ, Lopez-Llorca LV, Jansson HB, Salinas J, Persmark L, Asensio L (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154(2):491–499

    Article  CAS  PubMed  Google Scholar 

  • Brahma U, Borah A (2016) Management of Meloidogyne incognita on pea with bioagents and organic amendment. Indian J Nematol 46(1):58–61

    Google Scholar 

  • Chaverri P, Samuels GJ, Hodge KT (2005) The genus Podocrella and its nematode-killing anamorph Harposporium. Mycologia 97(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Cheng CY, Huang TL, Li YK (2005) Chitosanase from Paecilomyces lilacinus with binding affinity for specific chitooligosaccharides. Biotechnol Appl Biochem 41(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Clarke AJ, Cox PM, Shepherd AM (1967) The chemical composition of the egg shells of the potato cyst-nematode, Heterodera rostochiensis woll. Biochem J 104(3):1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decraemer W, Hunt DJ (2006) Structure and classification. In: Perry RN, Moens M (eds) Plant nematology. CABI Publishing, Wallingford, pp 3–32

    Chapter  Google Scholar 

  • Devi TS, Mahanta B, Borah A (2016) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on brinjal. Indian J Nematol 46:161–164

    Google Scholar 

  • Dhawan SC, Singh S (2009) Compatibility of Pochonia chlamydosporia with nematicide and neem cake against root-knot nematode, meloidogyne incognita infesting okra. Indian J Nematol 39(1):85–89

    Google Scholar 

  • Drechsler C (1937) Some hyphomycetes that prey on free living terricolous nematodes. Mycologia 29:447–552

    Article  Google Scholar 

  • Escudero N, Lopez-Llorca LV (2012) Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 57(1):33–42

    Article  Google Scholar 

  • Feyisa B, Lencho A, Selvaraj T, Getaneh G (2015) Evaluation of some botanicals and Trichoderma harzianum for the management of tomato root-knot Nematode (Meloidogyne incognita) (Kofoid and White) Chitwood. Adv Crop Sci Technol 4:201

    Article  Google Scholar 

  • Fresenius G (1852) Beitrage zur mykologie. Heft 1-2:1–80

    Google Scholar 

  • Gogoi D, Mahanta B (2013) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on French bean. Ann Plant Prot Sci 21(1):72–175

    Google Scholar 

  • Gupta R, Tiwari S, Saikia SK, Shukla V, Singh R, Singh SP, Kumar PV, Pandey R (2015a) Exploitation of microbes for enhancing bacoside content and reduction of M. incognita infestation in B. monnieri L. Protoplasma 252(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Saikia SK, Pandey R (2015b) Bioconsortia augments antioxidant and yield in Matricaria recutita L. against M. incognita (Kofoid and White) Chitwood infestation. Proc Natl Acad Sci India Sect B Biol Sci 87(2):335–342

    Article  Google Scholar 

  • Hastuti LDS, Faull J (2018) Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode Meloidogyne incognita on deli tobacco (nicotiana tabaccum l) cv. deli 4. IOP Conf Ser 130(1):012009)

    Article  Google Scholar 

  • Hsueh YP, Gronquist MR, Schwarz EM, Nath RD, Lee CH, Gharib S, Schroeder FC, Sternberg PW (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. elife 6:e20023

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang WK, Sun JH, Cui JK, Wang GF, Kong LA, Peng H, Chen SL, Peng DL (2014) Efficacy evaluation of fungus Syncephalastrum racemosum and nematicide avermectin against the RKN M incognita on cucumber. PLoS One 9(2):e89717

    Article  PubMed  PubMed Central  Google Scholar 

  • Indian Economy (2004) Special issue updated with economic survey 2004–05 and budget 2005. Published by Pearson Education; 15th Floor World Trade Tower, C01, Sector 16, Noida, Uttar Pradesh

    Google Scholar 

  • Jansson H-B (1987) Receptors and recognition in nematodes. In: Veech J, Dickson D (eds) Vistas on nematology. Society of Nematologists, Hyattsville, pp 153–158

    Google Scholar 

  • Jansson HB, Friman E (1999) Infection-related surface proteins on conidia of the nematophagous fungus Drechmeria coniospora. Mycol Res 103(2):249–256

    Article  Google Scholar 

  • Jansson HB, Lopez-Llorca LV (2001) Biology of nematophagous fungi. In: Misra JK, Horn BW (eds) Mycology: trichomycetes, other fungal groups and mushrooms. Science Publishers, Enfield, pp 145–173

    Google Scholar 

  • Jansson HB, Nordbring-Hertz B (1979) Attraction of nematodes to living mycelium of nematophagous fungi. Microbiology 112(1):89–93

    Google Scholar 

  • Jansson H-B, Nordbring-Hertz B (1983) The endoparasitic fungus Meria coniospora infects nematodes specifically at the chemosensory organs. J Gen Microbiol 129:1121–1126

    Google Scholar 

  • Jansson H-B, Nordbring-Hertz B (1984) Involvement of sialic acid in nematode chemotaxis and infection by an endoparasitic nematophagous fungus. J Gen Microbiol 130:39–43

    CAS  Google Scholar 

  • Jansson HB, Nordbring-Hertz B (1988) Infection events in the fungus-nematode system. Dis Nematodes 2:59–72

    Google Scholar 

  • Jansson HB, Thiman L (1992) A preliminary study of chemotaxis of zoospores of the nematode-parasitic fungus Catenaria anguillulae. Mycologia 84(1):109–112

    Article  Google Scholar 

  • Jansson H-B, Jeyaprakash A, Damon RA, Zuckerman BM (1984) Caenorhabditis elegans and Panagrellus redivivus: enzyme-mediated modification of chemotaxis. Exp Parasitol 58:270–277

    Article  CAS  PubMed  Google Scholar 

  • Jeyaprakash A, Jansson HB, Marban-Mendoza N, Zuckerman BM (1985) Caenorhabditis elegans: lectin-mediated modification of chemotaxis. Experimental Parasitol 59(1):90–97

    Article  CAS  Google Scholar 

  • Kendrick B (2001) The fifth kingdom, 3rd edn. Focus Publishing, Newburyport

    Google Scholar 

  • Kim YH (2015) Predatory nematodes as biocontrol agents of phytonematodes. In: Askary TK, Martinelly PRP (eds) Biocontrol agents of phytonematodes. CABI, Wallingford, pp 393–420

    Chapter  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW, Donald PA, Becker JO, Fortnum BA (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J Nematol 31(4):587–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larriba E, Jaime MD, Nislow C, Martín-Nieto J, Lopez-Llorca LV (2015) Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J Plant Res 128:665–678

    Article  CAS  PubMed  Google Scholar 

  • Lee N, D’Souza CA, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 41:399–427

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang J, Huang X, Zhang KQ (2006) Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochem 41:925–929

    Article  CAS  Google Scholar 

  • Lopez-Llorca LV (1990a) Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can J Microbiol 36:8

    Article  Google Scholar 

  • Lopez-Llorca LV (1990b) Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can J Microbiol 36:530–537

    Article  CAS  Google Scholar 

  • Lopez-Llorca LV, Claugher D (1990) Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron Microsc Acta 21:125–130

    Article  Google Scholar 

  • Lopez-Llorca LV, Olivares-Bernabeu C, Salinas J, Jansson HB, Kolattukudy PE (2002) Prepenetration events in fungal parasitism of nematode eggs. Mycol Res 106:499–506

    Article  CAS  Google Scholar 

  • Luns FD, Assis RCL, Silva LPC, Ferraz CM, Braga FR, Araujo JVD (2018) Coadministration of nematophagous fungi for biocontrol over nematodes in bovine in the South-Eastern Brazil. Biomed Res Int 2018:2934674

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Mo M, Huang X, Li X, Zhang K (2004) Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematodes. Mycologia 96:1218–1225

    Article  PubMed  Google Scholar 

  • Luo H, Liu Y, Fang L, Li X, Tang N, Zhang K (2007) Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl Environ Microbiol 73(12):3916–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei X, Wang X, Li G (2021) Pathogenicity and volatile nematicidal metabolites from Duddingtonia flagrans against meloidogyne incognita. Microorganisms 9(11):2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Money NP (1998) Mechanics of invasive fungal growth and the significance of turgor in plant infection. In: Molecular genetics of host-specific toxins in plant disease. Kluwer Academic Publishers, Dordrecht, pp 261–271

    Chapter  Google Scholar 

  • Muthulakshmi M, Kumar S, Subramanian S, Anita B (2012) Compatibility of Pochonia chlamydosporia with other biocontrol agents and carbofuran. J Biopest 5:243–245

    Google Scholar 

  • Narasimhamurthy HB, Ravindra H, Sehgal M (2017) Management of rice root knot nematode, Meloidogyne graminicola. Int J Pure Appl Biosci 5:268–276

    Article  Google Scholar 

  • Nicol J, Turner D, Coyne L, den Nijs L, Hockland S, Maafi Z (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Berlin, pp 21–43

    Chapter  Google Scholar 

  • Nordbring-Hertz B (2004) Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora - an extensive plasticity of infection structures. Mycologist 18(3):125–133

    Article  Google Scholar 

  • Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectin mediated host-microorganism interaction. Nature 281:477–479

    Article  CAS  Google Scholar 

  • Nordbring-Hertz B, Jansson HB, Tunlid A (2006) Nematophagous fungi. In: Encyclopedia of life sciences. Wiley, Hoboken, pp 1–11

    Google Scholar 

  • Parihar K, Rehman B, Ganai MA, Asif M, Siddiqui MA (2015) Role of oil cakes and Pochonia chlamydosporia for the management of Meloidogyne javanica attacking Solanum melongena L. J Plant Pathol Microbiol 1:1–5

    Google Scholar 

  • Pfister DH, Liftik ME (2018) Two Arthrobotrys anamorphs from Orbilia auricolor. Mycologia 87(5):684–688

    Article  Google Scholar 

  • Pramer D (1964) Nematode-trapping fungi. Science 144:382–388

    Article  CAS  PubMed  Google Scholar 

  • Raveendra HR, Krishna MR, Mahesh KR (2011) Management of root knot nematode Meloidogyne incognita by using oil cake, bioagent, trap crop, chemicals and their combination. Int J Sci Nat 2:519–523

    CAS  Google Scholar 

  • Sasser JN (1989) Plant parasitic nematodes: the farmer’s hidden enemy. North Carolina State University, Raleigh, p 115

    Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists Inc., Hyattsville, pp 7–14

    Google Scholar 

  • Schmidt AR, Dorfelt H, Perrichot V (2007) Carnivorous fungi from Cretaceous Amber. Science 318:1743

    Article  CAS  PubMed  Google Scholar 

  • Scholler M, Hagedorn G, Rubner A (1999) A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. Sydowia 51:89–113

    Google Scholar 

  • Segers R, Butt TM, Kerry BR, Peberdy F (1994) The nematophagous fungus Verticillium chlamydosporium Goddard produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology 140:2715–2723

    Article  CAS  PubMed  Google Scholar 

  • Shamalie BVT, Fonseka RM, Rajapaksha RGAS (2011) Effect of Trichoderma viride and carbofuran (Curator®) on management of root-knot nematodes and growth parameters of Gotukola (Centella asiatica L.). Trop Agric Res 23:61–69

    Article  Google Scholar 

  • Singh UB (2007) Occurrence, characterization and performance of some predacious fungi. M.Sc. Thesis. Hindu University, Varanasi, India

    Google Scholar 

  • Singh S (2013) Integrated approach for the management of the root-knot nematode, Meloidogyne incognita, on eggplant under field conditions. Nematology 15:747–757

    Article  Google Scholar 

  • Singh UB, Sahu A, Sahu N, Singh RK, Renu RP, Singh DP, Sharma BK, Manna MC (2012a) Co-inoculation of Dactylaria brochopaga and Monacrosporium eudermatum affects disease dynamics and biochemical responses in tomato (Lycopersicon esculentum Mill.) to enhance bioprotection against Meloidogyne incognita. Crop Prot 35:102–109

    Article  CAS  Google Scholar 

  • Singh UB, Sahu A, Singh RK, Singh DP, Meena Kamlesh K, Srivastava JS, Renu Manna MC (2012b) Evaluation of biocontrol potential of Arthrobotrys oligospora against Meloidogyne graminicola and Rhizoctonia solani in Rice (Oryza sativa L.). Biol Control 60:262–270

    Article  Google Scholar 

  • Singh UB, Sahu A, Sahu N, Singh BP, Singh RK, Renu S, Jaiswal RK, Sharma BK, Singh HB, Manna MC, Subba Rao A, Prasad RS (2013) Can endophytic Arthrobotrys oligospora modulate accumulation of defence related biomolecules and induced systemic resistance in tomato (Lycopersicon esculentum Mill.) against root knot disease caused by Meloidogyne incognita. Appl Soil Ecol 63:45–56

    Article  Google Scholar 

  • Singh UB, Singh S, Malviya D, Chaurasia R, Mohd I, Rai JP, Sharma AK (2017) Harnessing biocontrol potential of Trichoderma harzianum for control Meloidogyne incognita in tomato. Indian Phytopathol 70:331–335

    Google Scholar 

  • Singh UB, Malviya D, Singh S, Kumar M, Sahu PK, Singh HV, Kumar S, Roy M, Imran M, Rai JP, Sharma AK (2019a) Trichoderma harzianum and methyl jasmonate-induced resistance to Bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). Front Microbiol 10:1697

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh UB, Singh S, Khan W, Malviya D, Sahu PK, Chaurasia R, Sharma SK, Saxena AK (2019b) Drechslerella dactyloides and Dactylaria brochopaga mediated induction of defense related mediator molecules in tomato plants pre-challenged with Meloidogyne incognita. India Phytopathol 72:309–320

    Article  Google Scholar 

  • Soliman MS, El-Deriny MM, Ibrahim DSS, Zakaria H, Ahmed Y (2021) Suppression of root-knot nematode Meloidogyne incognita on tomato plants using the nematode trapping fungus Arthrobotrys oligospora Fresenius. J Appl Microbiol 131(5):2402–2415

    Article  CAS  PubMed  Google Scholar 

  • Sorokin N (1876) Note sur les vegetaux parasites des Anguillulae. Ann Sci Nat Bot Ser 6(4):62–71

    Google Scholar 

  • St. Leger RJ (1993) Biology and mechanism of insect-cuticle invasion by Deuteromycete fungal pathogens. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects: pathogens, vol 2. Academic, San Diego, pp 211–229

    Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes: progress, problems and prospects. CAB International, Wallingford

    Google Scholar 

  • Suarez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65:46–55

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35(1):67–78

    Article  CAS  PubMed  Google Scholar 

  • Tunlid A, Johansson T, Nordbring-Hertz B (1991a) Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 137:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Tunlid A, Nivens DE, Jansson HB, White DC (1991b) Infrared monitoring of the adhesion of Catenaria anguillulae zoospores to solid surfaces. Exp Mycol 15:206–214

    Article  Google Scholar 

  • Tunlid A, Jansson H-B, Nordbring-Hertz B (1992) Fungal attachment to nematodes. Mycol Res 96:401–412

    Article  Google Scholar 

  • Wang M, Yang J, Zhang KQ (2006a) Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Can J Microbiol 52:130–139

    Article  CAS  PubMed  Google Scholar 

  • Wang RB, Yang JK, Lin C, Zhang Y, Zhang KQ (2006b) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol 42:589–594

    CAS  PubMed  Google Scholar 

  • Wang X, Li GH, Zou CG, Ji XL, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X, Qin YK (2014) Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 5(1):1–9

    Article  Google Scholar 

  • Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160:313–337

    Article  CAS  PubMed  Google Scholar 

  • Woronin MS (1870) Sphaeria lemaneae, Sordaria coprophila, Arthrobotrys oligospora. Nat Ges 7:325

    Google Scholar 

  • Yang J, Huang X, Tian B, Sun H, Duan J, Wu W, Zhang M (2005a) Characterization of an extracellular serine protease gene from the nematophagous fungus Lecanicillium psalliotae. Biotechnol Lett 27:1329–2334

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Huang X, Tian B, Wang M, Niu Q, Zhang K (2005b) Isolation and characterization of a serine protease from the nematophagous fungus Lecanicillium psalliotae, displaying nematicidal activity. Biotechnol Lett 27:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Yang JK, Tian BY, Liang LM, Zhang KQ (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31

    Article  CAS  PubMed  Google Scholar 

  • Yu’e H, Mo M, Su H, Zhang K (2005) Ecology of aquatic nematode-trapping hyphomycetes in southwestern China. Aquat Microb Ecol 40:175–181

    Article  Google Scholar 

  • Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50

    Article  Google Scholar 

  • Zare R, Gams W, Evans HC (2001) A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73:51–86

    Article  Google Scholar 

  • Zhang Y, Zhang K-Q, Hyde KD (2014) The ecology of nematophagous fungi in natural environments. Nematode-trapping fungi. Springer, Dordrecht, pp 211–229

    Book  Google Scholar 

  • Zhang Z, Zhang X, Jhao J, Zhang X, Liang W (2015) Tillage and rotation effects on community composition and metabolic footprints of soil nematodes in a black soil. Eur J Soil Biol 66:40–48

    Article  Google Scholar 

  • Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J (2020a) Fungi-nematode interactions: diversity, ecology, and biocontrol prospects in agriculture. J Fungi 6:1–24

    Article  CAS  Google Scholar 

  • Zhang FA, Liu S-R, Zhou X-J et al (2020b) Fusarium xiangyunensis (Nectriaceae) a remarkable new species of the Nematophagous fungi from Yunnan, China. Phytotaxa 450:273–284

    Article  Google Scholar 

  • Zhao M, Mo M, Zhang Z (2004) Characterization of a serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia 96:16–22

    Article  CAS  Google Scholar 

  • Zopf W (1888) Zur. Kenntnis der infections-Krankheiten niederer Tiere. Nova Acta Leop Acad Nat Halle 52:7

    Google Scholar 

  • Zuckerman BM (1983) Hypothesis and possibilities of intervention in nematode chemoreceptors. J Nematol 15:173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman BM, Jansson H-B (1984) Nematode chemotaxis and mechanisms of host/prey recognition. Annu Rev Phytopathol 22:95–113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Director of ICAR-NBAIM, Mau, for providing scientific and technical support during preparation of the manuscript. The authors gratefully acknowledge the Science and Engineering Research Board, Department of Science and Technology, Government of India, for providing financial support for the study.

Conflicts of Interest

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the content reported in this manuscript. The authors declare no conflict of interest.

Funding

This research was supported by Science and Engineering Research Board, Department of Science and Technology, New Delhi (India).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, B. et al. (2023). Nematophagous Fungi: Biology, Ecology and Potential Application. In: Singh, U.B., Kumar, R., Singh, H.B. (eds) Detection, Diagnosis and Management of Soil-borne Phytopathogens. Springer, Singapore. https://doi.org/10.1007/978-981-19-8307-8_12

Download citation

Publish with us

Policies and ethics