Skip to main content

Intelligent Document Processing in End-to-End RPA Contexts: A Systematic Literature Review

  • Chapter
  • First Online:
Confluence of Artificial Intelligence and Robotic Process Automation

Abstract

Automating organizational processes typically involves document processing techniques for a large document set. For that purpose, the Intelligent Document Processing (IDP) paradigm has been studied for decades. With the fast emergence of Robotic Process Automation (RPA) in the process automation landscape, the industrial solution of IDP with RPA integration has risen significantly in the last few years. However, there is no up-to-date overview of the available knowledge in this area. Therefore, this chapter studies the current scientific knowledge about IDP and its integration into RPA through a systematic literature review that analyzed 77 primary studies. In addition, an industry review was performed, analyzing and characterizing 37 industrial tools. Although the results confirm the growth in the research interest in IDP in different dimensions, they also identify a lack of proposals that integrate IDP and RPA paradigms in confrontation with the industrial solutions that have increasingly led to its integration.

This research has been supported by the NICO project (PID2019-105455GB-C31) of the Spanish Ministry of Science, Innovation and Universities and the CODICE project (EXP 00130458/IDI-20210319 - P018-20/E09) of the Center for the Development of Industrial Technology (CDTI) and by the FPU scholarship program, granted by the Spanish Ministry of Education and Vocational Training (FPU20/05984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.automationanywhere.com/rpa/intelligent-document-processing.

  2. 2.

    https://www.abbyy.com/flexicapture/.

  3. 3.

    A complete analysis of the analysis executed can be found on the sheet with the title “Scientific” within the Excel document available at https://doi.org/10.5281/zenodo.6400519.

  4. 4.

    https://www.google.es/.

  5. 5.

    https://www.bing.com.

  6. 6.

    https://search.aol.com/aol/webhome.

  7. 7.

    The relationship between these tools and the characteristics described in Table 5.11 are shown in the sheet with the title “Industrial” in the Excel document available at https://doi.org/10.5281/zenodo.6400519.

References

  1. Abdallah, A., Berendeyev, A., Nuradin, I., Nurseitov, D.: Tncr: Table net detection and classification dataset. Neurocomputing (2021)

    Google Scholar 

  2. Ahmed, R., Gogate, M., Tahir, A., Dashtipour, K., Al-Tamimi, B., Hawalah, A., El-Affendi, M.A., Hussain, A.: Deep neural network-based contextual recognition of Arabic handwritten scripts. Entropy 23(3), 340 (2021)

    Article  Google Scholar 

  3. Alaei, A., Conte, D., Martineau, M., Raveaux, R.: Blind document image quality prediction based on modification of quality aware clustering method integrating a patch selection strategy. Exp. Syst. Appl. 108, 183–192 (2018)

    Article  Google Scholar 

  4. Annabestani, M., Saadatmand-Tarzjan, M.: A new threshold selection method based on fuzzy expert systems for separating text from the background of document images. Iran. J. Sci. Technol. Trans. Electr. Eng. 43(1), 219–231 (2019)

    Article  Google Scholar 

  5. Au, W., Ait-Azzi, A., Kang, J.: Finsbd-2021: the 3rd shared task on structure boundary detection in unstructured text in the financial domain. In: Companion Proceedings of the Web Conference, pp. 276–279 (2021)

    Google Scholar 

  6. Baidya, A.: Document analysis and classification: a robotic process automation (RPA) and machine learning approach. In: 2021 4th International Conference on Information and Computer Technologies (ICICT). pp. 33–37. IEEE (2021)

    Google Scholar 

  7. Banumathi, K.L., Jagadeesh Chandra, A.P.: An approach to estimate skew angle in printed document images. In: 2019 1st International Conference on Advances in Information Technology (ICAIT), pp. 480–484. IEEE (2019)

    Google Scholar 

  8. Baviskar, D., Ahirrao, S., Kotecha, K.: A bibliometric survey on cognitive document processing. Libr. Philos. Pract. 1–31 (2020)

    Google Scholar 

  9. Baviskar, D., Ahirrao, S., Potdar, V., Kotecha, K.: Efficient automated processing of the unstructured documents using artificial intelligence: a systematic literature review and future directions. IEEE Access (2021)

    Google Scholar 

  10. Bhowmik, S., Sarkar, R., Nasipuri, M., Doermann, D.: Text and non-text separation in offline document images: a survey. Int. J. Doc. Anal. Recogn. (IJDAR) 21(1), 1–20 (2018)

    Google Scholar 

  11. Biswas, S., Riba, P., Lladós, J., Pal, U.: Beyond document object detection: instance-level segmentation of complex layouts. Int. J. Doc. Anal. Recogn. (IJDAR) 24(3), 269–281 (2021)

    Article  Google Scholar 

  12. Boroş, E., Romero, V., Maarand, M., Zenklová, K., Křečková, J., Vidal, E., Stutzmann, D., Kermorvant, C.: A comparison of sequential and combined approaches for named entity recognition in a corpus of handwritten medieval charters. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 79–84. IEEE (2020)

    Google Scholar 

  13. Bourbakis, N., Mertoguno, S.: A holistic approach for automatic deep understanding and protection of technical documents. Int. J. Artif. Intell. Tools 29(06), 2050007 (2020)

    Article  Google Scholar 

  14. Bukhari, S.S., Kadi, A., Jouneh, M.A., Mir, F.M., Dengel, A.: anyocr: An open-source OCR system for historical archives. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 305–310. IEEE (2017)

    Google Scholar 

  15. Burget, R.: Model-based integration of unstructured web data sources using graph representation of document contents. In: WEBIST, pp. 326–333 (2019)

    Google Scholar 

  16. Calvo-Zaragoza, J., Castellanos, F.J., Vigliensoni, G., Fujinaga, I.: Deep neural networks for document processing of music score images. Appl. Sci. 8(5), 654 (2018)

    Article  Google Scholar 

  17. Can, Y.S., Kabadayı, M.E.: Line segmentation of individual demographic data from Arabic handwritten population registers of ottoman empire. In: International Conference on Document Analysis and Recognition, pp. 312–321. Springer (2021)

    Google Scholar 

  18. Chakraborti, T., Isahagian, V., Khalaf, R., Khazaeni, Y., Muthusamy, V., Rizk, Y., Unuvar, M.: From robotic process automation to intelligent process automation. In: International Conference on Business Process Management, pp. 215–228. Springer (2020)

    Google Scholar 

  19. Cristani, M., Bertolaso, A., Scannapieco, S., Tomazzoli, C.: Future paradigms of automated processing of business documents. Int. J. Inform. Manag. 40, 67–75 (2018)

    Article  Google Scholar 

  20. Degtyarenko, I., Deriuga, I., Grygoriev, A., Polotskyi, S., Melnyk, V., Zakharchuk, D., Radyvonenko, O.: Hierarchical recurrent neural network for handwritten strokes classification. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2865–2869. IEEE (2021)

    Google Scholar 

  21. Enríquez, J.G., Jimenez-Ramirez, A., Dominguez-Mayo, F., Garcia-Garcia, J.: Robotic process automation: a scientific and industrial systematic mapping study. IEEE Access 8, 39113–39129 (2020)

    Article  Google Scholar 

  22. Fawzi, A., Pastor, M., Martínez-Hinarejos, C.D.: Baseline detection on Arabic handwritten documents. In: Proceedings of the 2017 ACM Symposium on Document Engineering, pp. 193–196 (2017)

    Google Scholar 

  23. Feng, D., Chen, H.: A small samples training framework for deep learning-based automatic information extraction: case study of construction accident news reports analysis. Adv. Eng. Inform. 47, 101256 (2021)

    Article  Google Scholar 

  24. Fenton, K., Simske, S.: Engineering of an artificial intelligence safety data sheet document processing system for environmental, health, and safety compliance. In: Proceedings of the 21st ACM Symposium on Document Engineering, pp. 1–4 (2021)

    Google Scholar 

  25. Fernandes, J., Simsek, M., Kantarci, B., Khan, S.: Tabledet: an end-to-end deep learning approach for table detection and table image classification in data sheet images. Neurocomputing 468, 317–334 (2022)

    Article  Google Scholar 

  26. Fugini, M., Finocchi, J.: Quality evaluation for documental big data. In: Proceedings of the 22nd International Conference on Enterprise Information Systems—Volume 1: ICEIS, pp. 132–139. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009394301320139

  27. Gatos, B., Louloudis, G., Stamatopoulos, N., Sfikas, G.: Historical document processing. In: Proceedings of the 2017 ACM Symposium on Document Engineering, pp. 1–2 (2017)

    Google Scholar 

  28. Gómez-Pérez, P., Phan, T.N., Küeng, J.: Agricultural knowledge extraction from text sources using a distributed mapreduce cluster. In: 2016 27th International Workshop on Database and Expert Systems Applications (DEXA), pp. 29–33. IEEE (2016)

    Google Scholar 

  29. Gorai, M., Nene, M.J.: Layout and text extraction from document images using neural networks. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 1107–1112. IEEE (2020)

    Google Scholar 

  30. Grygoriev, A., Degtyarenko, I., Deriuga, I., Polotskyi, S., Melnyk, V., Zakharchuk, D., Radyvonenko, O.: Hcrnn: a novel architecture for fast online handwritten stroke classification. In: International Conference on Document Analysis and Recognition, pp. 193–208. Springer (2021)

    Google Scholar 

  31. Guerry, C., Coüasnon, B., Lemaitre, A.: Combination of deep learning and syntactical approaches for the interpretation of interactions between text-lines and tabular structures in handwritten documents. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 858–863. IEEE (2019)

    Google Scholar 

  32. Ha, H., Horák, A.: Information extraction from scanned invoice images using text analysis and layout features. Signal Proc.: Image Commun., 116601 (2021)

    Google Scholar 

  33. Hadjadji, B., Chibani, Y., Nemmour, H.: An efficient open system for offline handwritten signature identification based on curvelet transform and one-class principal component analysis. Neurocomputing 265, 66–77 (2017)

    Article  Google Scholar 

  34. Hammarström, H.: Inventory and content separation in grammatical descriptions of languages of the world. In: International Conference on Theory and Practice of Digital Libraries, pp. 29–40. Springer (2021)

    Google Scholar 

  35. Holeček, M.: Learning from similarity and information extraction from structured documents. Int. J. Doc. Anal. Recogn. (IJDAR), 1–17 (2021)

    Google Scholar 

  36. Ivančić, L., Suša Vugec, D., Bosilj Vukšić, V.: Robotic process automation: systematic literature review. In: International Conference on Business Process Management, pp. 280–295. Springer (2019)

    Google Scholar 

  37. Jalali, F., Ebrahimi, A.: A novel mixed approach for detecting overlap in document images. In: 2017 Iranian Conference on Electrical Engineering (ICEE), pp. 1701–1707. IEEE (2017)

    Google Scholar 

  38. Jiang, J., Simsek, M., Kantarci, B., Khan, S.: High precision deep learning-based tabular position detection. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7. IEEE (2020)

    Google Scholar 

  39. Jun, C., Suhua, Y., Shaofeng, J.: Automatic classification and recognition of complex documents based on faster RCNN. In: 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), pp. 573–577. IEEE (2019)

    Google Scholar 

  40. Kajla, N.I., Missen, M.M.S., Luqman, M.M., Coustaty, M., Mehmood, A., Choi, G.S.: Additive angular margin loss in deep graph neural network classifier for learning graph edit distance. IEEE Access 8, 201752–201761 (2020)

    Article  Google Scholar 

  41. Kara, E., Traquair, M., Kantarci, B., Khan, S.: Deep learning for recognizing the anatomy of tables on datasheets. In: 2019 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE (2019)

    Google Scholar 

  42. Kara, E., Traquair, M., Simsek, M., Kantarci, B., Khan, S.: Holistic design for deep learning-based discovery of tabular structures in datasheet images. Eng. Appl. Artif. Intell. 90, 103551 (2020)

    Article  Google Scholar 

  43. Keeling, R., Chhatwal, R., Huber-Fliflet, N., Zhang, J., Wei, F., Zhao, H., Shi, Y., Qin, H.: Empirical comparisons of CNN with other learning algorithms for text classification in legal document review. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 2038–2042. IEEE (2019)

    Google Scholar 

  44. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering (2007)

    Google Scholar 

  45. Lenc, L., Martínek, J., Král, P., Nicolao, A., Christlein, V.: Hdpa: historical document processing and analysis framework. Evol. Syst. 12, 177–190 (2021)

    Article  Google Scholar 

  46. Li, D., Wu, Y., Zhou, Y.: Linecounter: Learning handwritten text line segmentation by counting (2021). arXiv preprint arXiv:2105.11307

  47. Li, J., Lin, C.M., Hu, S.x.: Intelligent document processing method based on robot process automation. In: 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), pp. 1–6. IEEE (2021)

    Google Scholar 

  48. Ljajić, A., Stanković, M., Marovac, U.: Detection of negation in the Serbian language. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6 (2018)

    Google Scholar 

  49. Long, S., He, X., Yao, C.: Scene text detection and recognition: the deep learning era. Int. J. Comput. Vis. 129(1), 161–184 (2021)

    Article  Google Scholar 

  50. Mansar, Y., Kang, J., Maarouf, I.E.: The finsim-2 2021 shared task: learning semantic similarities for the financial domain. In: Companion Proceedings of the Web Conference 2021, pp. 288–292 (2021)

    Google Scholar 

  51. Martínez-Rojas, A., Sánchez-Oliva, J., López-Carnicer, J., Jiménez-Ramírez, A.: Airpa: An architecture to support the execution and maintenance of AI-powered RPA robots. In: International Conference on Business Process Management, pp. 38–48. Springer (2021)

    Google Scholar 

  52. Memon, J., Sami, M., Khan, R.A., Uddin, M.: Handwritten optical character recognition (OCR): a comprehensive systematic literature review (SLR). IEEE Access 8, 142642–142668 (2020)

    Article  Google Scholar 

  53. Mercier, D., Rizvi, S.T.R., Rajashekar, V., Dengel, A., Ahmed, S.: Impactcite: An xlnet-based solution enabling qualitative citation impact analysis utilizing sentiment and intent. In: ICAART (2), pp. 159–168 (2021)

    Google Scholar 

  54. Mijangos, V., Sierra, G., Montes, A.: Sentence level matrix representation for document spectral clustering. Pattern Recogn. Lett. 85, 29–34 (2017)

    Article  Google Scholar 

  55. Mittal, R., Garg, A.: Text extraction using OCR: a systematic review. In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 357–362. IEEE (2020)

    Google Scholar 

  56. Moreno, M., Schirmer, L., Bayser, M., Brandão, R., Cerqueira, R.: Understanding documents with hyperknowledge specifications. In: Proceedings of the ACM Symposium on Document Engineering 2018, pp. 1–4 (2018)

    Google Scholar 

  57. Neji, H., Halima, M.B., Hamdani, T.M., Nogueras-Iso, J., Alimi, A.M.: Blur2sharp: a GAN-based model for document image deblurring. Int. J. Comput. Intell. Syst. 14(1), 1315–1321 (2021)

    Article  Google Scholar 

  58. Ng, K.K., Chen, C.H., Lee, C.K., Jiao, J.R., Yang, Z.X.: A systematic literature review on intelligent automation: aligning concepts from theory, practice, and future perspectives. Adv. Eng. Inform. 47, 101246 (2021)

    Article  Google Scholar 

  59. Nguyen, M.T., Le, D.T., Le, L.: Transformers-based information extraction with limited data for domain-specific business documents. Eng. Appl. Artif. Intell. 97, 104100 (2021)

    Article  Google Scholar 

  60. Obukhov, A., Krasnyanskiy, M.: Application of machine learning for document classification and processing in adaptive information systems. In: Computer Science On-line Conference, pp. 291–300. Springer (2020)

    Google Scholar 

  61. Oliveira, S.A., Seguin, B., Kaplan, F.: dhsegment: A generic deep-learning approach for document segmentation. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 7–12. IEEE (2018)

    Google Scholar 

  62. Oral, B., Emekligil, E., Arslan, S., Eryiǧit, G.: Information extraction from text intensive and visually rich banking documents. Inform. Proc. Manag. 57(6), 102361 (2020)

    Article  Google Scholar 

  63. Pappu, A., Blanco, R., Mehdad, Y., Stent, A., Thadani, K.: Lightweight multilingual entity extraction and linking. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 365–374 (2017)

    Google Scholar 

  64. Park, C., Shin, J., Park, S., Lim, J., Lee, C.: Fast end-to-end coreference resolution for Korean. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pp. 2610–2624 (2020)

    Google Scholar 

  65. Pastor, M.: Text baseline detection, a single page trained system. Pattern Recogn. 94, 149–161 (2019)

    Article  Google Scholar 

  66. Philips, J., Tabrizi, N.: Historical document processing: A survey of techniques, tools, and trends. In: KDIR, pp. 341–349 (2020)

    Google Scholar 

  67. Poddar, A., Chakraborty, A., Mukhopadhyay, J., Biswas, P.K.: Detection and localisation of struck-out-strokes in handwritten manuscripts. In: International Conference on Document Analysis and Recognition, pp. 98–112. Springer (2021)

    Google Scholar 

  68. Poddar, A., Chakraborty, A., Mukhopadhyay, J., Biswas, P.K.: Texrgan: a deep adversarial framework for text restoration from deformed handwritten documents. In: Proceedings of the Twelfth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1–9 (2021)

    Google Scholar 

  69. Qasim, S.R., Mahmood, H., Shafait, F.: Rethinking table recognition using graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 142–147. IEEE (2019)

    Google Scholar 

  70. Qurashi, A.W., Holmes, V., Johnson, A.P.: Document processing: methods for semantic text similarity analysis. In: 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–6. IEEE (2020)

    Google Scholar 

  71. Rabby, A.S.A., Islam, M.M., Hasan, N., Nahar, J., Rahman, F.: A novel deep learning character-level solution to detect language and printing style from a bilingual scanned document. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 5218–5226. IEEE (2020)

    Google Scholar 

  72. Research, E.G.: Everest group peak matrix tm for intelligent document processing (IDP) (2021)

    Google Scholar 

  73. Ribeiro, J., Lima, R., Paiva, S.: Document classification in robotic process automation using artificial intelligence—a preliminary literature review. Commun. Intell. Syst., 211–221 (2021)

    Google Scholar 

  74. Rusticus, D., Goldmann, L., Reisser, M., Villegas, M.: Document domain adaptation with generative adversarial networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1432–1437. IEEE (2019)

    Google Scholar 

  75. Santoro, A., De Stefano, C., Marcelli, A.: Assisted transcription of historical documents by keyword spotting: a performance model. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 971–976. IEEE (2017)

    Google Scholar 

  76. Shen, Z., Zhang, R., Dell, M., Lee, B.C.G., Carlson, J., Li, W.: Layoutparser: A unified toolkit for deep learning based document image analysis (2021). arXiv preprint arXiv:2103.15348

  77. Shidaganti, G., Salil, S., Anand, P., Jadhav, V.: Robotic process automation with AI and OCR to improve business process. In: 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 1612–1618. IEEE (2021)

    Google Scholar 

  78. Sirajudeen, M., Anitha, R.: Forgery document detection in information management system using cognitive techniques. J. Intell. Fuzzy Syst. 39(6), 8057–8068 (2020)

    Article  Google Scholar 

  79. Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S.J., Ouyang, C., ter Hofstede, A.H., van de Weerd, I., Wynn, M.T., Reijers, H.A.: Robotic process automation: contemporary themes and challenges. Comput. Indus. 115, 103162 (2020)

    Article  Google Scholar 

  80. Tafti, A.P., Baghaie, A., Assefi, M., Arabnia, H.R., Yu, Z., Peissig, P.: OCR as a service: an experimental evaluation of Google Docs OCR, Tesseract, ABBYY Finereader, and Transym. In: International Symposium on Visual Computing, pp. 735–746. Springer (2016)

    Google Scholar 

  81. Tensmeyer, C., Martinez, T.: Document image binarization with fully convolutional neural networks. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 99–104. IEEE (2017)

    Google Scholar 

  82. Tensmeyer, C., Martinez, T.: Confirm-clustering of noisy form images using robust matching. Pattern Recogn. 87, 1–16 (2019)

    Article  Google Scholar 

  83. Tomoiaga, C., Feng, P., Salzmann, M., Jayet, P.: Field typing for improved recognition on heterogeneous handwritten forms. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 487–493. IEEE (2019)

    Google Scholar 

  84. Toselli, A.H., Romero, V., Vidal, E.: Word graphs size impact on the performance of handwriting document applications. Neural Comput. Appl. 28(9), 2477–2487 (2017)

    Article  Google Scholar 

  85. Tran, M.T., Trieu, L.Q., Tran, H.Q.: Document representation and classification with twitter-based document embedding, adversarial domain-adaptation, and query expansion. J. Heurist., 1–23 (2019)

    Google Scholar 

  86. Ubul, K., Tursun, G., Aysa, A., Impedovo, D., Pirlo, G., Yibulayin, T.: Script identification of multi-script documents: a survey. IEEE Access 5, 6546–6559 (2017)

    Google Scholar 

  87. Vinjit, B., Bhojak, M.K., Kumar, S., Chalak, G.: A review on handwritten character recognition methods and techniques. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 1224–1228. IEEE (2020)

    Google Scholar 

  88. Wang, J., Si, S., Hong, Z., Qu, X., Zhu, X., Xiao, J.: Case study of few-shot learning in text recognition models. In: International Conference on Web Information Systems Engineering, pp. 394–401. Springer (2021)

    Google Scholar 

  89. Würsch, M., Ingold, R., Liwicki, M.: Divaservices-a restful web service for document image analysis methods. Digit. Scholarship Human. 32(suppl_1), i150–i156 (2017)

    Google Scholar 

  90. Xiong, Z., Shen, Q., Wang, Y., Zhu, C.: Paragraph vector representation based on word to vector and CNN learning. Comput. Mater. Continua 55(2), 213–227 (2018)

    Google Scholar 

  91. Yamazaki, A., Sando, K., Suzuki, T., Aiba, A.: A handwritten Japanese historical kana reprint support system: Development of a graphical user interface. In: Proceedings of the ACM Symposium on Document Engineering 2018, pp. 1–4 (2018)

    Google Scholar 

  92. Yang, Y., Feng, Y., Ge, J., Zhou, Y., Zeng, J., Li, C., Luo, B.: Checking the statutes in Chinese judgment document based on editing distance algorithm. In: 2017 14th Web Information Systems and Applications Conference (WISA), pp. 197–200. IEEE (2017)

    Google Scholar 

  93. Zhao, M., Hochuli, A.G., Cheddad, A.: End-to-end approach for recognition of historical digit strings (2021). arXiv preprint arXiv:2104.13666

  94. Zhu, X., Wang, J., Hong, Z., Xia, T., Xiao, J.: Federated learning of unsegmented chinese text recognition model. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1341–1345. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martínez-Rojas .

Editor information

Editors and Affiliations

Appendix A: List of Abbreviations

Appendix A: List of Abbreviations

 

RPA:

      Robotic Process Automation

IDP:

      Intelligent Document Processing

AI:

      Artificial Intelligence

OCR:

      Optical Character Recognition

SLR:

      Systematic Literature Review

RQs:

      Research Questions

 

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Rojas, A., López-Carnicer, J.M., González-Enríquez, J., Jiménez-Ramírez, A., Sánchez-Oliva, J.M. (2023). Intelligent Document Processing in End-to-End RPA Contexts: A Systematic Literature Review. In: Bhattacharyya, S., Banerjee, J.S., De, D. (eds) Confluence of Artificial Intelligence and Robotic Process Automation. Smart Innovation, Systems and Technologies, vol 335. Springer, Singapore. https://doi.org/10.1007/978-981-19-8296-5_5

Download citation

Publish with us

Policies and ethics