Skip to main content

Multi-Omics Data Analysis for Inflammation Disease Research: Correlation Analysis, Causal Analysis and Network Analysis

  • Chapter
  • First Online:
Methodologies of Multi-Omics Data Integration and Data Mining

Part of the book series: Translational Bioinformatics ((TRBIO,volume 19))

  • 990 Accesses

Abstract

In recent decades, an enormous amount of research on the human gut microbiota has established that it is strongly associated with human health and is involved in the occurrence and development of a variety of diseases, including inflammation diseases. However, current research has concentrated on the relationship between disease and the human gut microbiota, as well as the interactions between microorganisms. The absence of a more detailed understanding of the mechanism and causation of diseases associated with the gut microbiota restricts clinical diagnosis and treatment. Due to the advancement of sequencing and mass spectrometry techniques, numerous approaches have been used in microbiome research to generate multi-omics datasets that can provide a comprehensive view of the compositions and changes in microbial communities’ genetic, metabolic, and biochemical processes, as well as an in-depth understanding of the gut microbiome and diseases. Nonetheless, the absence of systematic reviews of multi-omics approaches and their application to diseases restricts their application to microbiome research. As such, we took a holistic view of multi-omics approaches in the gut microbiome and discussed how multi-omics approaches could aid in disease diagnosis and treatment in this review. To be clear, we used inflammation disease as a model disease to introduce multi-omics approaches, integrated analysis methods for multi-omics datasets, and their application to inflammation diseases, particularly in terms of treatment methods involving microbiome approaches. Without a doubt, our comprehensive review of multi-omics approaches in inflammation disease and the bioinformatics tools for integrating multi-omics datasets may help identify clades for clinical diagnosis and treatment of inflammation diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham PE, et al. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities. Curr Protoc Bioinformatics. 2014;46(1):13.26. 1-13.26. 14

    Article  Google Scholar 

  • Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14(10):609–20.

    Article  CAS  Google Scholar 

  • Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005;4(3):130–6.

    Article  Google Scholar 

  • Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis: a review. JAMA. 2018;320(13):1360–72.

    Article  Google Scholar 

  • Alipour B, et al. Effects of L actobacillus casei supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: a randomized double-blind clinical trial. Int J Rheum Dis. 2014;17(5):519–27.

    CAS  Google Scholar 

  • Amir A, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems. 2017;2:2.

    Article  Google Scholar 

  • Amy IY, et al. Gut microbiota modulate CD8 T cell responses to influence colitis-associated tumorigenesis. Cell Rep. 2020;31(1):107471.

    Article  Google Scholar 

  • Aqaeinezhad Rudbane SM, et al. The efficacy of probiotic supplementation in rheumatoid arthritis: a meta-analysis of randomized, controlled trials. Inflammopharmacology. 2018;26(1):67–76.

    Article  CAS  Google Scholar 

  • Arumugam M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.

    Article  CAS  Google Scholar 

  • Aßhauer KP, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31(17):2882–4.

    Article  Google Scholar 

  • Bäckhed F, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.

    Article  Google Scholar 

  • Benítez-Páez A, et al. A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in overweight humans. mSystems. 2019;4(4):e00209–19.

    Article  Google Scholar 

  • Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7.

    Article  CAS  Google Scholar 

  • Borchers AT, et al. The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev. 2010;9(5):A277–87.

    Article  CAS  Google Scholar 

  • Bullock J, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract. 2018;27(6):501–7.

    Article  Google Scholar 

  • Callahan BJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.

    Article  CAS  Google Scholar 

  • Cambiaghi A, Ferrario M, Masseroli M. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief Bioinform. 2017;18(3):498–510.

    CAS  Google Scholar 

  • Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–25.

    Article  CAS  Google Scholar 

  • Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

    Article  CAS  Google Scholar 

  • Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108(Supplement 1):4516–22.

    Article  CAS  Google Scholar 

  • Cassotta M, et al. Nutrition and rheumatoid arthritis in the ‘omics’ era. Nutrients. 2021;13(3):763.

    Article  CAS  Google Scholar 

  • Chen B, et al. The gut microbiota of non-treated patients with SLE defines an autoimmunogenic and proinflammatory profile. Hoboken NJ: Arthritis Rheumatol; 2020.

    Google Scholar 

  • Chen BD, et al. An autoimmunogenic and proinflammatory profile defined by the gut microbiota of patients with untreated systemic lupus erythematosus. Arthritis Rheumatol. 2021;73(2):232–43.

    Article  CAS  Google Scholar 

  • Chen S, et al. Linkages of firmicutes and Bacteroidetes populations to methanogenic process performance. J Ind Microbiol Biotechnol. 2016;43(6):771–81.

    Article  CAS  Google Scholar 

  • Clemente JC, et al. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.

    Article  CAS  Google Scholar 

  • Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn's Colitis. 2014;8(12):1569–81.

    Article  Google Scholar 

  • Dekaboruah E, et al. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol. 2020;202(8):2147–67.

    Article  CAS  Google Scholar 

  • Dhakan DB, et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. GigaScience. 2019;8:3.

    Article  Google Scholar 

  • Douglas GM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–8.

    Article  CAS  Google Scholar 

  • Duan R, et al. Alterations of gut microbiota in patients with irritable bowel syndrome based on 16S rRNA-targeted sequencing: a systematic review. Clin Transl Gastroenterol. 2019;10:2.

    Article  Google Scholar 

  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020:1–17.

    Google Scholar 

  • Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 2013;7(4):880–4.

    Article  CAS  Google Scholar 

  • Fernandes J, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4(6):e121.

    Article  CAS  Google Scholar 

  • Franzosa EA, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962–8.

    Article  CAS  Google Scholar 

  • Gaulke CA, Sharpton TJ. The influence of ethnicity and geography on human gut microbiome composition. Nat Med. 2018;24(10):1495–6.

    Article  CAS  Google Scholar 

  • Gevers D, et al. The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10(8):e1001377.

    Article  CAS  Google Scholar 

  • Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 2016;158:52–62.

    Article  CAS  Google Scholar 

  • Glasner ME. Finding enzymes in the gut metagenome. Science. 2017;355(6325):577–8.

    Article  CAS  Google Scholar 

  • Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016;4(1):1–12.

    Article  Google Scholar 

  • Guerrini MM, Vogelzang A, Fagarasan S. A hen in the wolf Den: a pathobiont tale. Immunity. 2018;48(4):628–31.

    Article  CAS  Google Scholar 

  • Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009;19(7):1141–52.

    Article  CAS  Google Scholar 

  • Han M, et al. The human gut virome in hypertension. Front Microbiol. 2018;9:3150.

    Article  Google Scholar 

  • Han M, et al. Stratification of athletes’ gut microbiota: the multifaceted hubs associated with dietary factors, physical characteristics and performance. Gut Microbes. 2020a;12(1):1–18.

    Article  Google Scholar 

  • Han M, et al. Comparative genomics uncovers the genetic diversity and characters of Veillonella atypica and provides insights into its potential applications. Front Microbiol. 2020b;11:1219.

    Article  Google Scholar 

  • Hansen RL, et al. Nanoparticle microarray for high-throughput microbiome metabolomics using matrix-assisted laser desorption ionization mass spectrometry. Anal Bioanal Chem. 2019;411(1):147–56.

    Article  CAS  Google Scholar 

  • Harley IT, Karp CL. Obesity and the gut microbiome: striving for causality. Mol Metab. 2012;1(1–2):21–31.

    Article  CAS  Google Scholar 

  • Heintz-Buschart A, et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol. 2016;2(1):16180.

    Article  CAS  Google Scholar 

  • Horta-Baas G, et al. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. 2017;2017

    Google Scholar 

  • Huang L, et al. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 2018;46(D1):D516–21.

    Article  CAS  Google Scholar 

  • Integrative H. The Integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):276–89.

    Article  Google Scholar 

  • Integrative H, et al. The integrative human microbiome project. Nature. 2019;569(7758):641–8.

    Article  Google Scholar 

  • Isaacs-Ten A, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability in mice. Hepatology (Baltimore, Md). 2020;72(6):2090.

    Article  CAS  Google Scholar 

  • Jia B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016:gkw1004.

    Google Scholar 

  • Jiang D, et al. Microbiome multi-omics network analysis: statistical considerations, limitations, and opportunities. Front Genet. 2019;10:995.

    Article  CAS  Google Scholar 

  • Jing G, et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci Rep. 2017;7(1):1–11.

    Article  Google Scholar 

  • Kho ZY, Lal SK. The human gut microbiome—a potential controller of wellness and disease. Front Microbiol. 2018;9:1835.

    Article  Google Scholar 

  • Kishikawa T, et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis. 2020;79(1):103–11.

    Article  CAS  Google Scholar 

  • Kulecka M, et al. The composition and richness of the gut microbiota differentiate the top polish endurance athletes from sedentary controls. Gut Microbes. 2020;11(5):1374–84.

    Article  CAS  Google Scholar 

  • Kultima JR, et al. MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics. 2016;32(16):2520–3.

    Article  CAS  Google Scholar 

  • Kurilshikov A, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–65.

    Article  CAS  Google Scholar 

  • Langille MG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.

    Article  CAS  Google Scholar 

  • Lee H-J, et al. Meta-analysis of targeted metabolomics data from heterogeneous biological samples provides insights into metabolite dynamics. bioRxiv. 2019:509372.

    Google Scholar 

  • Li J, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14.

    Article  Google Scholar 

  • Liu H, et al. Resilience of human gut microbial communities for the long stay with multiple dietary shifts. Gut. 2019;68(12):2254–5.

    Article  CAS  Google Scholar 

  • Lloyd-Price J, et al. Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550(7674):61–6.

    Article  CAS  Google Scholar 

  • Lloyd-Price J, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–62.

    Article  CAS  Google Scholar 

  • Long S, et al. Metaproteomics characterizes human gut microbiome function in colorectal cancer. npj Biofilms Microbiomes. 2020;6(1):14.

    Article  Google Scholar 

  • Lopez J, Grinspan A. Fecal microbiota transplantation for inflammatory bowel disease. Gastroenterol Hepatol. 2016;12(6):374–9.

    Google Scholar 

  • Maeda Y, Takeda K. Role of gut microbiota in rheumatoid arthritis. J Clin Med. 2017;6(6):60.

    Article  Google Scholar 

  • Magne F, et al. The firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474.

    Article  CAS  Google Scholar 

  • Majithia V, Geraci SA. Rheumatoid arthritis: diagnosis and management. Am J Med. 2007;120(11):936–9.

    Article  Google Scholar 

  • Manasson J, Blank RB, Scher JU. The microbiome in rheumatology: where are we and where should we go? Ann Rheum Dis. 2020;79(6):727–33.

    Article  Google Scholar 

  • Manzo VE, Bhatt AS. The human microbiome in hematopoiesis and hematologic disorders. Blood. 2015;126(3):311–8.

    Article  CAS  Google Scholar 

  • Marchesi JR, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–9.

    Article  Google Scholar 

  • Marietta EV, et al. Suppression of inflammatory arthritis by human gut-derived Prevotella histicola in humanized mice. Arthritis Rheumatol. 2016;68(12):2878–88.

    Article  CAS  Google Scholar 

  • Metwaly A, Haller D. Multi-omics in IBD biomarker discovery: the missing links. Nat Rev Gastroenterol Hepatol. 2019;16(10):587–8.

    Article  Google Scholar 

  • Misra BB, et al. Integrated omics: tools, advances and future approaches. J Mol Endocrinol. 2019;62(1):R21–45.

    Article  CAS  Google Scholar 

  • Mithieux G. Does Akkermansia muciniphila play a role in type 1 diabetes? Gut. 2018;67(8):1373–4.

    Article  Google Scholar 

  • Mohammed AT, et al. The therapeutic effect of probiotics on rheumatoid arthritis: a systematic review and meta-analysis of randomized control trials. Clin Rheumatol. 2017;36(12):2697–707.

    Article  Google Scholar 

  • Mushtaq A. New clinical recommendations for Clostridium difficile. Lancet Infect Dis. 2018;18(4):384.

    Article  Google Scholar 

  • Muth T, et al. Meta-Proteome-Analyzer: A software tool specifically developed for the functional and taxonomic characterization of metaproteome data. in GCB2012: German conference on bioinformatics. 2012.

    Google Scholar 

  • Muth T, et al. The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. J Proteome Res. 2015;14(3):1557–65.

    Article  CAS  Google Scholar 

  • Muth T, et al. MPA portable: a stand-alone software package for analyzing metaproteome samples on the go. Anal Chem. 2018;90(1):685–9.

    Article  CAS  Google Scholar 

  • Neuman H, Koren O. The gut microbiota: a possible factor influencing systemic lupus erythematosus. Curr Opin Rheumatol. 2017;29(4):374–7.

    Article  CAS  Google Scholar 

  • Pan H, et al. Whether probiotic supplementation benefits rheumatoid arthritis patients: a systematic review and meta-analysis. Engineering. 2017;3(1):115–21.

    Article  CAS  Google Scholar 

  • Pan H, et al. A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis. Microbiome. 2019;7(1):107.

    Article  Google Scholar 

  • Pedersen HK, et al. A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nat Protoc. 2018;13(12):2781–800.

    Article  CAS  Google Scholar 

  • Pianta A, et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(5):964–75.

    Article  CAS  Google Scholar 

  • Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe. 2011;10(4):287–91.

    Article  CAS  Google Scholar 

  • Prodan A, et al. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS One. 2020;15(1):e0227434.

    Article  CAS  Google Scholar 

  • Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  Google Scholar 

  • Ramos PIP, et al. Leveraging user-friendly network approaches to extract knowledge from high-throughput omics datasets. Front Genet. 2019;10:1120.

    Article  CAS  Google Scholar 

  • Rognes T, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

    Article  Google Scholar 

  • Romo-Vaquero M, et al. Deciphering the human gut microbiome of urolithin metabotypes: association with enterotypes and potential cardiometabolic health implications. Mol Nutr Food Res. 2019;63(4):1800958.

    Article  Google Scholar 

  • Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.

    Article  CAS  Google Scholar 

  • Sandhu BK, McBride SM. Clostridioides difficile. Trends Microbiol. 2018;26(12):1049–50.

    Article  CAS  Google Scholar 

  • Santos LL, Morand EF. Macrophage migration inhibitory factor: a key cytokine in RA, SLE and atherosclerosis. Clin Chimica Acta. 2009;399(1–2):1–7.

    Article  CAS  Google Scholar 

  • Sarangi AN, Goel A, Aggarwal R. Methods for studying gut microbiota: a primer for physicians. J Clin Exp Hepatol. 2019;9(1):62–73.

    Article  Google Scholar 

  • Scheiman J, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019;25(7):1104–9.

    Article  CAS  Google Scholar 

  • Scher JU, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. elife. 2013;2:e01202.

    Article  Google Scholar 

  • Schloss PD, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.

    Article  CAS  Google Scholar 

  • Schwiertz A, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5.

    Article  Google Scholar 

  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.

    Article  CAS  Google Scholar 

  • Sharon G, et al. The central nervous system and the gut microbiome. Cell. 2016;167(4):915–32.

    Article  CAS  Google Scholar 

  • Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496–503.

    Article  CAS  Google Scholar 

  • Silverman GJ, Azzouz DF, Alekseyenko AV. Systemic lupus erythematosus and dysbiosis in the microbiome: cause or effect or both? Curr Opin Immunol. 2019;61:80–5.

    Article  CAS  Google Scholar 

  • Slowicka K, et al. Zeb2 drives invasive and microbiota-dependent colon carcinoma. Nat Cancer. 2020;1(6):620–34.

    Article  CAS  Google Scholar 

  • Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9(4):279–90.

    Article  CAS  Google Scholar 

  • Sutoyo DA, Atmaka DR, Sidabutar LMG. Dietary factors affecting firmicutes and Bacteroidetes ratio in solving obesity problem: a literature review. Media Gizi Indonesia. 2020;15(2):94–109.

    Article  Google Scholar 

  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36.

    Article  CAS  Google Scholar 

  • Tong Y, et al. Oral microbiota perturbations are linked to high risk for rheumatoid arthritis. Front Cell Infect Microbiol. 2020;9:475.

    Article  Google Scholar 

  • Torres J, et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut. 2020;69(1):42–51.

    Article  CAS  Google Scholar 

  • Truong DT, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–3.

    Article  CAS  Google Scholar 

  • Tu Q, et al. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics. 2019;35(6):1040–8.

    Article  CAS  Google Scholar 

  • Tuncbag N, et al. Network-based interpretation of diverse high-throughput datasets through the omics integrator software package. PLoS Comput Biol. 2016;12(4):e1004879.

    Article  Google Scholar 

  • Turnbaugh PJ, et al. The human microbiome project. Nature. 2007;449(7164):804–10.

    Article  CAS  Google Scholar 

  • Valdes AM, et al. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.

    Article  Google Scholar 

  • Van de Wiele T, et al. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol. 2016;12(7):398.

    Article  Google Scholar 

  • Vernocchi P, Del Chierico F, Putignani L. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front Microbiol. 2016;7:1144.

    Article  Google Scholar 

  • Walter J, et al. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–32.

    Article  CAS  Google Scholar 

  • Wang Y, et al. Metaproteomics: a strategy to study the taxonomy and functionality of the gut microbiota. J Proteome. 2020a;219:103737.

    Article  CAS  Google Scholar 

  • Wang Z, et al. Multi-omic meta-analysis identifies functional signatures of airway microbiome in chronic obstructive pulmonary disease. ISME J. 2020b;14(11):2748–65.

    Article  CAS  Google Scholar 

  • Wanichthanarak K, et al. Metabox: a toolbox for metabolomic data analysis, interpretation and integrative exploration. PLoS One. 2017;12(1):e0171046.

    Article  Google Scholar 

  • Westreich ST, et al. Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. Microbiome. 2019;7(1):41.

    Article  Google Scholar 

  • White RA, et al. The past, present and future of microbiome analyses. Nat Protoc. 2016;11(11):2049–53.

    Article  CAS  Google Scholar 

  • Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):1–12.

    Article  Google Scholar 

  • Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  CAS  Google Scholar 

  • Xia J, et al. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–7.

    Article  CAS  Google Scholar 

  • Xiong W, et al. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics. 2015;15(20):3424–38.

    Article  CAS  Google Scholar 

  • Xu H, et al. Interactions between gut microbiota and immunomodulatory cells in rheumatoid arthritis. Mediat Inflamm. 2020;2020

    Google Scholar 

  • Yan J, et al. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform. 2018;19(6):1370–81.

    CAS  Google Scholar 

  • Yong P, et al. Management of hypogammaglobulinaemia occurring in patients with systemic lupus erythematosus. Rheumatology. 2008;47(9):1400–5.

    Article  CAS  Google Scholar 

  • Zhang J, et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 2015a;9(9):1979–90.

    Article  Google Scholar 

  • Zhang X, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015b;21(8):895–905.

    Article  CAS  Google Scholar 

  • Zhang X, et al. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome. 2019;7(1):154.

    Article  Google Scholar 

  • Zhao L, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6.

    Article  CAS  Google Scholar 

  • Zhou J, et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio. 2015;6:1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maozhen Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, M. et al. (2023). Multi-Omics Data Analysis for Inflammation Disease Research: Correlation Analysis, Causal Analysis and Network Analysis. In: Ning, K. (eds) Methodologies of Multi-Omics Data Integration and Data Mining. Translational Bioinformatics, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-19-8210-1_6

Download citation

Publish with us

Policies and ethics