Skip to main content
  • 310 Accesses

Abstract

With the advent of targeted therapies and immunotherapies, precision medicine has entered clinical practice. Basket trials provide an important approach to evaluating treatment effects of targeted therapies and immunotherapies. Under the basket trial, patients with the same genetic or molecular aberrations, regardless of their cancer types, are enrolled in the trial for evaluating the effect of a targeted agent. The basket trial allows for the incorporation of precision medicine into clinical trials. This chapter introduces several frequentist and Bayesian designs for basket trials, with a special focus on borrowing information across cancer types using Bayesian hierarchical model approaches. Software for some designs are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/ basket-trials.

  2. 2.

    Precisely, the poisson-binomial distribution should be used to compute these p values.

  3. 3.

    https://cran.r-project.org/web/packages/bhmbasket/vignettes/reproduceExNex.html.

  4. 4.

    http://glimmer.rstudio.com/brbnci/BasketTrials/.

  5. 5.

    https://github.com/brbnci/BasketTrials/blob/91f42fa3398c137dd427eae19f42dcb1eec0e703/global.R.

References

  • Angus, D. C., Alexander, B. M., Berry, S., Buxton, M., Lewis, R., Paoloni, M., & Woodcock, J. (2019). Adaptive platform trials: Definition, design, conduct and reporting considerations. Nature Reviews Drug Discovery, 18(10), 797–808.

    Google Scholar 

  • Asano, J., & Hirakawa, A. (2020). A Bayesian basket trial design accounting for uncertainties of homogeneity and heterogeneity of treatment effect among subpopulations. Pharmaceutical Statistics, 19(6), 975–1000.

    Article  Google Scholar 

  • Beckman, R. A., Antonijevic, Z., Kalamegham, R., & Chen, C. (2016). Adaptive design for a confirmatory basket trial in multiple tumor types based on a putative predictive biomarker. Clinical Pharmacology & Therapeutics, 100(6), 617–625.

    Google Scholar 

  • Berry, S. M., Broglio, K. R., Groshen, S., & Berry, D. A. (2013). Bayesian hierarchical modeling of patient subpopulations: Efficient designs of phase II oncology clinical trials. Clinical Trials, 10(5), 720–734.

    Article  Google Scholar 

  • Chakradhar, S. (2016). Group mentality: Determining if targeted treatments really work for cancer. Nature Medicine, 22(3), 222–225.

    Article  Google Scholar 

  • Chapman, P. B., Hauschild, A., & Robert, C. (2005). Improved survival with vemurafenib in melanoma. North England Journal of Medicine, 353, 2135–2147.

    Google Scholar 

  • Chen, C., Li, X., Yuan, S., Antonijevic, Z., Kalamegham, R., & Beckman, R. A. (2016). Statistical design and considerations of a phase 3 basket trial for simultaneous investigation of multiple tumor types in one study. Statistics in Biopharmaceutical Research, 8(3), 248–257.

    Article  Google Scholar 

  • Chen, N., & Lee, J. J. (2020). Bayesian cluster hierarchical model for subgroup borrowing in the design and analysis of basket trials with binary endpoints. Statistical Methods in Medical Research, 29(9), 2717–2732.

    Article  MathSciNet  Google Scholar 

  • Chu, Y., & Yuan, Y. (2018). A Bayesian basket trial design using a calibrated Bayesian hierarchical model. Clinical Trials, 15(2), 149–158.

    Article  Google Scholar 

  • Chu, Y., & Yuan, Y. (2018b). BLAST: Bayesian latent subgroup design for basket trials accounting for patient heterogeneity. Journal of the Royal Statistical Society. Series C (Applied Statistics), 67(3), 723–740.

    Google Scholar 

  • Conley, B. A., & Doroshow, J. H. (2014, May). Molecular analysis for therapy choice: NCI MATCH. In Seminars in oncology (Vol. 41, No. 3, pp. 297–299).

    Google Scholar 

  • Cunanan, K. M., Iasonos, A., Shen, R., Begg, C. B., & Gönen, M. (2017). An efficient basket trial design. Statistics in Medicine, 36(10), 1568–1579.

    MathSciNet  Google Scholar 

  • Cunanan, K. M., Iasonos, A., Shen, R., & Gönen, M. (2019). Variance prior specification for a basket trial design using Bayesian hierarchical modeling. Clinical Trials, 16(2), 142–153.

    Google Scholar 

  • De Santis, F. (2006). Sample size determination for robust Bayesian analysis. Journal of the American Statistical Association, 101(473), 278–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming, G. F., Sill, M. W., Darcy, K. M., McMeekin, D. S., Thigpen, J. T., Adler, L. M., & Fiorica, J. V. (2010). Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: A gynecologic oncology group study. Gynecologic Oncology, 116(1), 15–20.

    Google Scholar 

  • Freidlin, B., & Korn, E. L. (2013). Borrowing information across subgroups in phase II trials: Is it useful? Borrowing information across subgroups. Clinical Cancer Research, 19(6), 1326–1334.

    Google Scholar 

  • Fuglede, B., & Topsoe, F. (2004, June). Jensen-Shannon divergence and Hilbert space embedding. In International symposium on information theory, 2004. ISIT 2004. Proceedings (p. 31). IEEE.

    Google Scholar 

  • Fujikawa, K., Teramukai, S., Yokota, I., & Daimon, T. (2020). A Bayesian basket trial design that borrows information across strata based on the similarity between the posterior distributions of the response probability. Biometrical Journal, 62(2), 330–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Gatzemeier, U., Groth, G., Butts, C., Van Zandwijk, N., Shepherd, F., Ardizzoni, A., & Hirsh, V. (2004). Randomized phase II trial of gemcitabinecisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Annals of Oncology, 15(1), 19–27.

    Google Scholar 

  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1(3), 515–534.

    Article  MathSciNet  MATH  Google Scholar 

  • Hatake, K., Tokudome, N., & Ito, Y. (2007). Next generation molecular targeted agents for breast cancer: focus on EGFR and VEGFR pathways. Breast Cancer, 14(2), 132–149.

    Article  Google Scholar 

  • Heinrich, M. C., Joensuu, H., Demetri, G. D., Corless, C. L., Apperley, J., Fletcher, J. A., & McArthur, G. (2008). Phase II, open-label study evaluating the activity of imatinib in treating life-threatening malignancies known to be associated with imatinib-sensitive tyrosine kinases. Clinical Cancer Research, 14(9), 2717–2725.

    Google Scholar 

  • Hobbs, B. P., & Landin, R. (2018). Bayesian basket trial design with exchangeability monitoring. Statistics in Medicine, 37(25), 3557–3572.

    Article  MathSciNet  Google Scholar 

  • Hyman, D. M., Puzanov, I., Subbiah, V., Faris, J. E., Chau, I., Blay, J. Y., ... & Baselga, J. (2015). Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. New England Journal of Medicine, 373(8), 726–736.

    Google Scholar 

  • Jiang, L., Nie, L., Yan, F., & Yuan, Y. (2021). Optimal Bayesian hierarchical model to accelerate the development of tissue-agnostic drugs and basket trials. Contemporary Clinical Trials, 107, 106460.

    Article  Google Scholar 

  • Kaizer, A. M., Koopmeiners, J. S., & Hobbs, B. P. (2018). Bayesian hierarchical modeling based on multisource exchangeability. Biostatistics, 19(2), 169–184.

    Article  MathSciNet  Google Scholar 

  • Kaizer, A. M., Koopmeiners, J. S., Kane, M. J., Roychoudhury, S., Hong, D. S., & Hobbs, B. P. (2019). Basket designs: Statistical considerations for oncology trials. JCO Precision Oncology, 3, 1–9.

    Article  Google Scholar 

  • Kane, M. J., Chen, N., Kaizer, A. M., Jiang, X., Xia, H. A., & Hobbs, B. P. (2019). Analyzing basket trials under multisource exchangeability assumptions. arXiv:1908.00618

  • Krajewska, M., & Rauch, G. (2021). A new basket trial design based on clustering of homogeneous subpopulations. Journal of Biopharmaceutical Statistics, 31(4), 425–447.

    Article  Google Scholar 

  • Kummar, S., Oza, A. M., fleming, G. F., Sullivan, D. M., Gandara, D. R., Naughton, M. J., & Doroshow, J. H. (2015). Randomized trial of oral cyclophosphamide and veliparib in high-grade serous ovarian, primary peritoneal, or fallopian tube cancers, or BRCA-mutant ovarian cancer. Clinical Cancer Research, 21(7), 1574–1582.

    Google Scholar 

  • LeBlanc, M., Rankin, C., & Crowley, J. (2009). Multiple histology phase II trials. Clinical Cancer Research, 15(13), 4256–4262.

    Google Scholar 

  • Le Tourneau, C., Delord, J. P., Gonçalves, A., Gavoille, C., Dubot, C., Isambert, N., & Paoletti, X. (2015). Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. The Lancet Oncology, 16(13), 1324–1334.

    Google Scholar 

  • Liu, R., Liu, Z., Ghadessi, M., & Vonk, R. (2017). Increasing the efficiency of oncology basket trials using a Bayesian approach. Contemporary Clinical Trials, 63, 67–72.

    Article  Google Scholar 

  • Liu, Y., Kane, M., Esserman, D., Zelterman, D., & Wei, W. (2021). Bayesian local exchangeability design for phase II basket trials. arXiv:2108.05127

  • Neuenschwander, B., Wandel, S., Roychoudhury, S., & Bailey, S. (2016). Robust exchangeability designs for early phase clinical trials with multiple strata. Pharmaceutical Statistics, 15(2), 123–134.

    Article  Google Scholar 

  • Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., & Bernards, R. (2012). Unresponsiveness of colon cancer to BRAF (V600E) inhibition through feedback activation of EGFR. Nature, 483(7387), 100–103.

    Google Scholar 

  • Qin, B. D., Jiao, X. D., Liu, K., Wu, Y., He, X., Liu, J., ... & Zang, Y. S. (2019). Basket trials for intractable cancer. Frontiers in Oncology, 9, 229.

    Google Scholar 

  • Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437), 179–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Sambucini, V. (2008). A Bayesian predictive two stage design for phase II clinical trials. Statistics in Medicine, 27(8), 1199–1224.

    Article  MathSciNet  Google Scholar 

  • Schram, A. M., Chang, M. T., Jonsson, P., & Drilon, A. (2017). Fusions in solid tumours: Diagnostic strategies, targeted therapy, and acquired resistance. Nature Reviews Clinical oncology, 14(12), 735–748.

    Google Scholar 

  • Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials, 10(1), 1–10.

    Article  Google Scholar 

  • Simon, R., & Polley, E. (2013). Clinical trials for precision oncology using next-generation sequencing. Personalized Medicine, 10(5), 485–495.

    Article  Google Scholar 

  • Simon, R., Geyer, S., Subramanian, J., & Roychowdhury, S. (2016, February). The Bayesian basket design for genomic variant-driven phase II trials. In Seminars in Oncology (Vol. 43, No. 1, pp. 13–18). WB Saunders.

    Google Scholar 

  • Simon, R. (2018). New designs for basket clinical trials in oncology. Journal of Biopharmaceutical Statistics, 28(2), 245–255.

    Article  Google Scholar 

  • Thall, P. F., Wathen, J. K., Bekele, B. N., Champlin, R. E., Baker, L. H., & Benjamin, R. S. (2003). Hierarchical Bayesian approaches to phase II trials in diseases with multiple subtypes. Statistics in Medicine, 22(5), 763–780.

    Article  Google Scholar 

  • Slosberg, E. D., Kang, B. P., Peguero, J., Taylor, M., Bauer, T. M., Berry, D. A., & Salvado, A. (2018). Signature program: A platform of basket trials. Oncotarget, 9(30), 21383.

    Google Scholar 

  • Wang, F., & Gelfand, A. E. (2002). A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. Statistical Science, 193–208.

    Google Scholar 

  • Wu, X., Wu, C., Liu, F., Zhou, H., & Chen, C. (2021). A generalized framework of optimal two-stage designs for exploratory basket trials. Statistics in Biopharmaceutical Research, (just-accepted), 1–12.

    Google Scholar 

  • Yin, G., & Yuan, Y. (2009). Bayesian model averaging continual reassessment method in phase I clinical trials. Journal of the American Statistical Association, 104(487), 954–968.

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, H., Hampson, L. V., & Wandel, S. (2020). A robust Bayesian meta-analytic approach to incorporate animal data into phase I oncology trials. Statistical Methods in Medical Research, 29(1), 94–110.

    Google Scholar 

  • Zhou, H., Chen, C., Sun, L., & Yuan, Y. (2020). Bayesian optimal phase II clinical trial design with time-to-event endpoint. Pharmaceutical Statistics, 19(6), 776–786.

    Google Scholar 

  • Zhou, H., Liu, F., Wu, C., Rubin, E. H., Giranda, V. L., & Chen, C. (2019). Optimal two-stage designs for exploratory basket trials. Contemporary Clinical Trials, 85, 105807.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Pan .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, H., Yuan, Y. (2023). Introduction to Basket Trials. In: Bayesian Adaptive Design for Immunotherapy and Targeted Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-19-8176-0_8

Download citation

Publish with us

Policies and ethics