Skip to main content

Composite Separator or Electrolyte for Lithium–Sulfur Battery

  • Chapter
  • First Online:
Functional Membranes for High Efficiency Molecule and Ion Transport

Abstract

The development and utilization of high-performance and high-energy–density battery is indispensable to meet the ever-increasing demands in advanced energy storage system (Bruce et al. in Nat Mater 11:19–29, 2012; Ran et al. in J Mater Chem A 6:23278–23282, 2018; Zhao et al. in Electrochim Acta 254:308–319, 2017; Yan et al. in Adv Energy Mater 9:1900148, 2019; Peng et al. in Adv Energy Mater 7:1700260, 2017). Particularly, lithium–sulfur (Li–S) battery is considered to be the most promising next-generation battery due to high theoretical capacity (1675 mAh g−1), high theoretical energy density (2600 Wh kg−1), and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  CAS  Google Scholar 

  2. J. Ran, H. Wang, H. Jin, C. Ling, X. Zhang, H. Ju, L. Jing, J. Wang, R. Zheng, S.Z. Qiao, Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H2 production. J. Mater. Chem. A 6, 23278–23282 (2018)

    Article  CAS  Google Scholar 

  3. T. Zhao, J. Zhang, Z. Du, Y. Liu, G. Zhou, J. Wang, Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance. Electrochim. Acta 254, 308–319 (2017)

    Article  CAS  Google Scholar 

  4. Y. Yan, C. Cheng, L. Zhang, Y. Li, J. Lu, Deciphering the reaction mechanism of lithium–sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater. 9, 1900148 (2019)

    Article  Google Scholar 

  5. H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017)

    Article  Google Scholar 

  6. Y. Zhao, Y. Ye, F. Wu, Y. Li, R. Chen, Anode interface engineering and architecture design for high-performance lithium–sulfur batteries. Adv. Mater. 31, 1806532 (2019)

    Article  Google Scholar 

  7. D. Lei, K. Shi, H. Ye, Z. Wan, Y. Wang, L. Shen, B. Li, Q.H. Yang, F. Kang, Y.B. He, Progress and perspective of solid-state lithium–sulfur batteries. Adv. Func. Mater. 28, 1707570 (2018)

    Article  Google Scholar 

  8. J. Xie, H.J. Peng, J.Q. Huang, W.T. Xu, X. Chen, Q. Zhang, A supramolecular capsule for reversible polysulfide storage/delivery in lithium–sulfur batteries. Angew. Chem. Int. Ed. 56, 16223–16227 (2017)

    Article  CAS  Google Scholar 

  9. C. Ye, Y. Jiao, A.D. Slattery, K. Davey, H. Wang, S.Z. Qiao, 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 16703–16707 (2018)

    Article  CAS  Google Scholar 

  10. F. Pei, L. Lin, D. Ou, Z. Zheng, S. Mo, X. Fang, N. Zheng, Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium–sulfur batteries. Nat. Commun. 8, 482 (2017)

    Article  Google Scholar 

  11. T. Zhao, P. Zhai, Z. Yang, J. Wang, L. Qu, F. Du, J. Wang, Self-supporting Ti3C2Tx foam/S cathodes with high sulfur loading for high-energy-density lithium–sulfur batteries. Nanoscale 10, 22954–22962 (2018)

    Article  CAS  Google Scholar 

  12. Y.C. Jeong, J.H. Kim, S. Nam, C.R. Park, S.J. Yang, Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Func. Mater. 28, 1707411 (2018)

    Article  Google Scholar 

  13. F. Pei, L. Lin, A. Fu, S. Mo, D. Ou, X. Fang, N. Zheng, A two-dimensional porous carbon-modified ceparator for high-energy-density Li–S batteries. Joule 2, 323–336 (2018)

    Article  CAS  Google Scholar 

  14. L. Wang, Y. Ye, N. Chen, Y. Huang, L. Li, F. Wu, R. Chen, Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv. Func. Mater. 28, 1800919 (2018)

    Article  Google Scholar 

  15. J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li, H. Wang, Y. Yang, K.C. Demella, S.R. Raghavan, C. Wang. High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 1803774 (2019)

    Google Scholar 

  16. Y. Yang, J. Zhang, Highly stable lithium–sulfur batteries based on laponite nanosheet-coated Celgard separators. Adv. Energy Mater. 8, 1801778 (2018)

    Article  Google Scholar 

  17. L. Kong, B.Q. Li, H.J. Peng, R. Zhang, J. Xie, J.Q. Huang, Q. Zhang, Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium–sulfur batteries. Adv. Energy Mater. 8, 1800849 (2018)

    Article  Google Scholar 

  18. S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong, Y. He, Q. Zhang, Y. Xu, A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium–sulfur batteries. Adv. Mater. 30, 1804581 (2018)

    Article  Google Scholar 

  19. X. Luo, X. Lu, G. Zhou, X. Zhao, Y. Ouyang, X. Zhu, Y.E. Miao, T. Liu, Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium−sulfur batteries. ACS Appl. Mater. Interfaces. 10, 42198–42206 (2018)

    Article  CAS  Google Scholar 

  20. J.Q. Huang, T.Z. Zhuang, Q. Zhang, H.J. Peng, C.M. Chen, F. Wei, Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium−sulfur batteries. ACS Nano 9, 3002–3011 (2015)

    Article  CAS  Google Scholar 

  21. Y. Song, W. Zhao, X. Zhu, L. Zhang, Q. Li, F. Ding, Z. Liu, J. Sun, Vanadium dioxide-graphene composite with ultrafast anchoring behavior of polysulfides for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10, 15733–15741 (2018)

    Article  CAS  Google Scholar 

  22. Y. Zhou, G. Hu, W. Zhang, Q. Li, Z. Zhao, Y. Zhao, F. Li, F. Geng, Cationic two-dimensional sheets for an ultralight electrostatic polysulfide trap toward high-performance lithium–sulfur batteries. Energy Storage Mater. 9, 39–46 (2017)

    Article  Google Scholar 

  23. X. Gao, X. Yang, M. Li, Q. Sun, J. Liang, J. Luo, J. Wang, W. Li, J. Liang, Y. Liu, S. Wang, Y. Hu, Q. Xiao, Y. Li, T.K. Sham, X. Sun, Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li–S batteries. Adv. Func. Mater. 29, 1806724 (2019)

    Article  Google Scholar 

  24. J. Song, D. Su, X. Xie, X. Guo, W. Bao, G. Shao, G. Wang, Immobilizing polysulfides with MXene-functionalized separators for stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016)

    Article  CAS  Google Scholar 

  25. K. Jiang, S. Gao, R. Wang, M. Jiang, J. Han, T. Gu, M. Liu, S. Cheng, K. Wang, Lithium sulfonate/carboxylate-anchored polyvinyl alcohol separators for lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10, 18310–18315 (2018)

    Article  CAS  Google Scholar 

  26. Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016)

    Article  CAS  Google Scholar 

  27. X. Wang, X. Hao, Y. Xia, Y. Liang, X. Xia, J. Tu, A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium–sulfur batteries. J. Membr. Sci. 582, 37–47 (2019)

    Article  CAS  Google Scholar 

  28. X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J.P. Mwizerwa, C. Wang, X. Xu, High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017)

    Article  Google Scholar 

  29. Z. Lin, C. Liang, Lithium–sulfur batteries: from liquid to solid cells. J. Mater. Chem. A 3, 936–958 (2014)

    Article  Google Scholar 

  30. J. Wang, M. Li, C. Liu, Y. Liu, T. Zhao, P. Zhai, J. Wang, An electronegative modified separator with semifused pores as a selective barrier for highly stable lithium–sulfur batteries. Ind. Eng. Chem. Res. 58, 14538–14547 (2019)

    Article  CAS  Google Scholar 

  31. J. Wang, P. Zhai, T. Zhao, M. Li, Z. Yang, H. Zhang, J. Huang, Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium–sulfur batteries. Electrochim. Acta 320, 134558 (2019)

    Article  CAS  Google Scholar 

  32. W. Kou, J. Wang, W. Li, R. Lv, N. Peng, W. Wu, J. Wang, Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery. J. Membr. Sci. 634, 119432 (2021)

    Article  CAS  Google Scholar 

  33. P. Zhai, N. Peng, Z. Sun, W. Wu, W. Kou, G. Cui, K. Zhao, J. Wang, Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium–sulfur battery. J. Mater. Chem. A 8, 23344–23353 (2020)

    Article  CAS  Google Scholar 

  34. J. Wang, X. Yue, Z. Zhang, Z. Yang, Y. Li, H. Zhang, X. Yang, H. Wu, Z. Jiang, Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes. Adv. Func. Mater. 22, 4539–4546 (2012)

    Article  CAS  Google Scholar 

  35. H. Chen, J.D. Snyder, Y.A. Elabd, Electrospinning and solution properties of Nafion and poly (acrylic acid). Macromolecules 41, 128–135 (2008)

    Article  CAS  Google Scholar 

  36. H. Tang, S. Peikang, S.P. Jiang, F. Wang, M. Pan, A degradation study of Nafion proton exchange membrane of PEM fuel cells. J. Power Sour. 170, 85–92 (2007)

    Article  CAS  Google Scholar 

  37. I. Bauer, S. Thieme, J. Brückner, H. Althues, S. Kaskel, Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators. J. Power Sour. 251, 417–422 (2014)

    Article  CAS  Google Scholar 

  38. Y. Zang, F. Pei, J. Huang, Z. Fu, G. Xu, X. Fang, Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Adv. Energy Mater. 8, 1802052 (2018)

    Article  Google Scholar 

  39. S. Ali, M. Waqas, X. Jing, N. Chen, D. Chen, J. Xiong, W. He, Carbon−tungsten disulfide composite bilayer separator for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10, 39417–39421 (2018)

    Article  CAS  Google Scholar 

  40. J.Q. Huang, Q. Zhang, H.J. Peng, X.Y. Liu, W.Z. Qian, F. Wei, Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014)

    Article  CAS  Google Scholar 

  41. C.E. Lin, H. Zhang, Y.Z. Song, Y. Zhang, J.J. Yuan, B.K. Zhu, Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J. Mater. Chem. A 6, 991–998 (2018)

    Article  CAS  Google Scholar 

  42. M. Yan, H. Chen, Y. Yu, H. Zhao, C.F. Li, Z.Y. Hu, P. Wu, L. Chen, H. Wang, D. Peng, H. Gao, T. Hasan, Y. Li, B.L. Su, 3D ferroconcrete-like aminated carbon nanotubes network anchoring sulfur for advanced lithium–sulfur batteries. Adv. Energy Mater. 8, 1801066 (2018)

    Article  Google Scholar 

  43. J. Park, B.C. Yu, J.S. Park, J.W. Choi, C. Kim, Y.E. Sung, J.B. Goodenough, Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv. Energy Mater. 7, 1602567 (2017)

    Article  Google Scholar 

  44. T.Z. Zhuang, J.Q. Huang, H.J. Peng, L.Y. He, X.B. Cheng, C.M. Chen, Q. Zhang, Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium–sulfur batteries. Small 12, 381–389 (2016)

    Article  CAS  Google Scholar 

  45. Y. Song, S. Zhao, Y. Chen, J. Cai, J. Li, Q. Yang, J. Sun, Z. Liu, Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li–S batteries. ACS Appl. Mater. Interfaces. 11, 5687–5694 (2019)

    Article  CAS  Google Scholar 

  46. J.Y. Hwang, H.M. Kim, S. Shin, Y.K. Sun, Designing a high-performance lithium–sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene-polypropylene-Al2O3 separator. Adv. Func. Mater. 28, 1704294 (2018)

    Article  Google Scholar 

  47. C. (John) Zhang, S.H. Park, A. Seral-Ascaso, S. Barwich, N. McEvoy, C.S. Boland, J.N. Coleman, Y. Gogotsi, V. Nicolosi, High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019)

    Google Scholar 

  48. W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang, K. Ye, Z. Chen, Y. Zhu, Y. Qian, Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium–sulfur batteries. Adv. Func. Mater. 28, 1704865 (2018)

    Article  Google Scholar 

  49. Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li, Z. Tang, MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv. Mater. 29, 1606817 (2017)

    Article  Google Scholar 

  50. L. Tan, X. Li, Z. Wang, H. Guo, J. Wang, Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10, 3707–3713 (2018)

    Article  CAS  Google Scholar 

  51. G. Gnana Kumar, S.H. Chung, T. Raj Kumar, A. Manthiram, Three-dimensional graphene-carbon nanotube-Ni hierarchical architecture as a polysulfide trap for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10, 20627–20634 (2018)

    Google Scholar 

  52. S. Song, L. Shi, S. Lu, Y. Pang, Y. Wang, M. Zhu, D. Ding, S. Ding, A new polysulfide blocker-poly (acrylic acid) modified separator for improved performance of lithium–sulfur battery. J. Membr. Sci. 563, 277–283 (2018)

    Article  CAS  Google Scholar 

  53. Y.S. Su, Y. Fu, T. Cochell, A. Manthiram, A strategic approach to recharging lithium–sulphur batteries for long cycle life. Nat. Commun. 4, 2985 (2013)

    Article  Google Scholar 

  54. Z. Wang, M. Feng, H. Sun, G. Li, Q. Fu, H. Li, J. Liu, L. Sun, A. Mauger, C.M. Julien, H. Xie, Z. Chen, Constructing metal-free and cost-effective multifunctional separator for high-performance lithium–sulfur batteries. Nano Energy 59, 390–398 (2019)

    Article  CAS  Google Scholar 

  55. Y.T. Liu, D.D. Han, L. Wang, G.R. Li, S. Liu, X.P. Gao, NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Adv. Energy Mater. 9, 1803477 (2019)

    Article  Google Scholar 

  56. D.B. Babu, K. Giribabu, K. Ramesha, Permselective SPEEK/Nafion composite-coated separator as a potential polysulfide crossover barrier layer for Li–S batteries. ACS Appl. Mater. Interfaces. 10, 19721–19729 (2018)

    Article  CAS  Google Scholar 

  57. T. Lei, W. Chen, Y. Hu, W. Lv, X. Lv, Y. Yan, J. Huang, Y. Jiao, J. Chu, C. Yan, C. Wu, Q. Li, W. He, J. Xiong, A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium–sulfur batteries. Adv. Energy Mater. 8, 1802441 (2018)

    Article  Google Scholar 

  58. W. Yang, J. Xiao, Y. Ma, S. Cui, P. Zhang, P. Zhai, L. Meng, X. Wang, Y. Wei, Z. Du, B. Li, Z. Sun, S. Yang, Q. Zhang, Y. Gong, Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium–sulfur batteries. Adv. Energy Mater. 9, 1803137 (2019)

    Article  Google Scholar 

  59. X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.H. Lin, L. Li, Y. Shen, C.W. Nan. Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018)

    Google Scholar 

  60. J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G. Yu, A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018)

    Article  CAS  Google Scholar 

  61. G. Widawski, M. Rawiso, B. François, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387–389 (1994)

    Article  CAS  Google Scholar 

  62. R. Jim, A. Campo, M.L. Calzada, J. Sanz, S.D. Kobylianska, S.O. Solopan, A.G. Belous. Lithium La0.57Li0.33TiO3 perovskite and Li1.3Al0.3Ti1.7(PO4)3 Li-NASICON supported thick films electrolytes prepared by tape casting method. J. Electrochem. Soc. 163, A1653–A1659 (2016)

    Google Scholar 

  63. Z. Xie, Z. Wu, X. An, X. Yue, P. Xiaokaiti, A. Yoshida, A. Abudula, G. Guan, A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. J. Membr. Sci. 596, 117739 (2020)

    Article  CAS  Google Scholar 

  64. S. Li, S.Q. Zhang, L. Shen, Q. Liu, J.B. Ma, W. Lv, Y.B. He, Q.H. Yang, Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7, 1903088 (2020)

    Article  CAS  Google Scholar 

  65. C. Liu, J. Wang, W. Kou, Z. Yang, P. Zhai, Y. Liu, W. Wu, J. Wang, A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 404, 126517 (2021)

    Article  CAS  Google Scholar 

  66. D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3, 57–94 (2020)

    Article  Google Scholar 

  67. W. Tang, S. Tang, C. Zhang, Q. Ma, Q. Xiang, Y.W. Yang, J. Luo, Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8, 1800866 (2018)

    Article  Google Scholar 

  68. Z. Jiang, H. Xie, S. Wang, X. Song, X. Yao, H. Wang, Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018)

    Article  Google Scholar 

  69. A. Li, X. Liao, H. Zhang, L. Shi, P. Wang, Q. Cheng, J. Borovilas, Z. Li, W. Huang, Z. Fu, M. Dontigny, K. Zaghib, K. Myers, X. Chuan, X. Chen, Y. Yang, Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32, 1905517 (2020)

    Article  CAS  Google Scholar 

  70. H.W. Kim, J. Han, Y.J. Lim, Y.S. Choi, E. Lee, Y. Kim, 3D ion-conducting, scalable, and mechanically reinforced ceramic film for high voltage solid-state batteries. Adv. Func. Mater. 31, 2002008 (2020)

    Article  Google Scholar 

  71. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019)

    Article  CAS  Google Scholar 

  72. Z. Xiao, B. Zhou, J. Wang, C. Zuo, D. He, X. Xie, Z. Xue, PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. J. Membr. Sci. 576, 182–189 (2019)

    Article  CAS  Google Scholar 

  73. Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.H. Yang, F. Kang, Y.B. He, Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Func. Mater. 29, 1805301 (2019)

    Article  Google Scholar 

  74. X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li, J. Borovilas, B. Xu, C. Shi, T. Jin, X. Liao, Y. Li, X. He, S. Du, Y. Fu, M. Dontigny, K. Zaghib, Y. Yang, Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 60, 205–212 (2019)

    Article  Google Scholar 

  75. H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal, Y. Yang, A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017)

    Article  CAS  Google Scholar 

  76. K.M. Diederichsen, E.J. McShane, B.D. McCloskey, Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2, 2563–2575 (2017)

    Article  CAS  Google Scholar 

  77. B.M. Savoie, M.A. Webb, T.F. Miller, Enhancing cation diffusion and suppressing anion diffusion via lewis-acidic polymer electrolytes. J. Phys. Chem. Lett. 8, 641–646 (2017)

    Article  CAS  Google Scholar 

  78. H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017)

    Article  CAS  Google Scholar 

  79. D.H. Kim, S. Hwang, J.J. Cho, S. Yu, S. Kim, J. Jeon, K.H. Ahn, C. Lee, H.K. Song, H. Lee, Toward fast operation of lithium batteries: ion activity as the factor to determine the concentration polarization. ACS Energy Lett. 4, 1265–1270 (2019)

    Article  CAS  Google Scholar 

  80. Y. Li, D. Cao, W. Arnold, Y. Ren, C. Liu, J.B. Jasinski, T. Druffel, Y. Cao, H. Zhu, H. Wang, Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Mater. 31, 344–351 (2020)

    Article  Google Scholar 

  81. X. Judez, H. Zhang, C. Li, G.G. Eshetu, Y. Zhang, J.A. González-Marcos, M. Armand, L.M. Rodriguez-Martinez, Polymer-rich composite electrolytes for all-solid-state Li–S cells. J. Phys. Chem. Lett. 8, 3473–3477 (2017)

    Article  CAS  Google Scholar 

  82. N. Wu, P.H. Chien, Y. Li, A. Dolocan, H. Xu, B. Xu, N.S. Grundish, H. Jin, Y.Y. Hu, J.B. Goodenough, Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020)

    Article  CAS  Google Scholar 

  83. D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu, R.H. Dauskardt, Y. Cui, A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, 1802661 (2018)

    Article  Google Scholar 

  84. N. Wu, P.H. Chien, Y. Qian, Y. Li, H. Xu, N.S. Grundish, B. Xu, H. Jin, Y.Y. Hu, G. Yu, J.B. Goodenough, Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 59, 4131–4137 (2020)

    Article  CAS  Google Scholar 

  85. W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang, J. Luo, High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Func. Mater. 29, 1900648 (2019)

    Article  Google Scholar 

  86. Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019)

    Article  CAS  Google Scholar 

  87. J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.Q. Chen, J. Qin, Y. Cui, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019)

    Article  CAS  Google Scholar 

  88. J. Lopez, D.G. Mackanic, Y. Cui, Z. Bao, Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019)

    Article  CAS  Google Scholar 

  89. G. He, M. Xu, J. Zhao, S. Jiang, S. Wang, Z. Li, X. He, T. Huang, M. Cao, H. Wu, M.D. Guiver, Z. Jiang, Bioinspired ultrastrong solid electrolytes with fast proton conduction along 2D channels. Adv. Mater. 29, 1605898 (2017)

    Article  Google Scholar 

  90. N. Zhao, W. Khokhar, Z. Bi, C. Shi, X. Guo, L.Z. Fan, C.W. Nan, Solid garnet batteries. Joule 3, 1190–1199 (2019)

    Article  CAS  Google Scholar 

  91. X. Chen, W. He, L.X. Ding, S. Wang, H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019)

    Article  CAS  Google Scholar 

  92. Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao, X. Hu, Q. Han, H. Wang, Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 32, 1906221 (2020)

    Google Scholar 

  93. Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu, H. Bu, S. Ding, g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 7, 11069–11076 (2019)

    Article  CAS  Google Scholar 

  94. L. Chen, W. Li, L.Z. Fan, C.W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Func. Mater. 29, 1901047 (2019)

    Article  Google Scholar 

  95. X. Gao, X. Zheng, J. Wang, Z. Zhang, X. Xiao, J. Wan, Y. Ye, L.Y. Chou, H.K. Lee, J. Wang, R.A. Vila, Y. Yang, P. Zhang, L.W. Wang, Y. Cui, Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium–sulfur batteries. Nano Lett. 20, 5496–5503 (2020)

    Article  CAS  Google Scholar 

  96. M. Jana, R. Xu, X.B. Cheng, J.S. Yeon, J.M. Park, J.Q. Huang, Q. Zhang, H.S. Park, Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy Environ. Sci. 13, 1049–1075 (2020)

    Article  CAS  Google Scholar 

  97. G.G. Eshetu, X. Judez, C. Li, M. Martinez-Ibanez, I. Gracia, O. Bondarchuk, J. Carrasco, L.M. Rodriguez-Martinez, H. Zhang, M. Armand, Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 140, 9921–9933 (2018)

    Article  CAS  Google Scholar 

  98. Y.X. Song, Y. Shi, J. Wan, S.Y. Lang, X.C. Hu, H.J. Yan, B. Liu, Y.G. Guo, R. Wen, L.J. Wan, Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: a degradation mechanism study. Energy Environ. Sci. 12, 2496–2506 (2019)

    Article  CAS  Google Scholar 

  99. S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W.G. Zeier, F.H. Richter, J. Janek, Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020)

    Article  CAS  Google Scholar 

  100. W. Shen, K. Li, Y. Lv, T. Xu, D. Wei, Z. Liu, Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Adv. Energy Mater. 10, 1904281 (2020)

    Article  CAS  Google Scholar 

  101. S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss, D.E.J. Armstrong, D. Cai, R.J. Wallace, F.H. Richter, J.H.J. Thijssen, P.G. Bruce, Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjia Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kou, W., Huang, J., Wu, W. (2023). Composite Separator or Electrolyte for Lithium–Sulfur Battery. In: Wang, J., Wu, W. (eds) Functional Membranes for High Efficiency Molecule and Ion Transport. Springer, Singapore. https://doi.org/10.1007/978-981-19-8155-5_6

Download citation

Publish with us

Policies and ethics