Skip to main content

Composite Proton Exchange Membrane for Hydrogen Fuel Cell

  • Chapter
  • First Online:
Functional Membranes for High Efficiency Molecule and Ion Transport

Abstract

Fuel cell, converting chemical energy into electrical energy, has been regarded as promising next generation energy conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Jiang, Z. Jiang, Plasma techniques for the fabrication of polymer electrolyte membranes for fuel cells. J. Membr. Sci. 456, 85–106 (2014)

    Article  CAS  Google Scholar 

  2. M. Hasani-Sadrabadi, E. Dashtimoghadam, N. Mokarramd, F. Majedi, K. Jacob, Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53, 2643–2651 (2012)

    Article  CAS  Google Scholar 

  3. B. Choi, Y. Huh, Y. Park, D. Jung, W. Hong, Enhanced transport properties in polymer electrolyte composite membranes with GO sheets. Carbon 50, 5395–5402 (2012)

    Article  CAS  Google Scholar 

  4. A. Argun, J. Ashcraft, P. Hammond, Highly conductive, methanol resistant polyelectrolyte multilayers. Adv. Mater. 20, 1539–1543 (2008)

    Article  CAS  Google Scholar 

  5. B. Vinayan, R. Nagar, N. Rajalakshmi, S. Ramaprabhu, Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv. Func. Mater. 22, 3519–3526 (2012)

    Article  CAS  Google Scholar 

  6. Z. Yao, Z. Zhang, L. Wu, T. Xu, Novel sulfonated polyimides proton-exchange membranes via a facile polyacylation approach of imide monomers. J. Membr. Sci. 455, 1–6 (2014)

    Article  CAS  Google Scholar 

  7. M. Hickner, H. Ghassemi, Y. Kim, B. Einsla, J. McGrath, Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004)

    Article  CAS  Google Scholar 

  8. P. Venkatesan, S. Dharmalingam, Characterization and performance study on chitosan-functionalized multi walled carbon nano tube as separator in microbial fuel cell. J. Membr. Sci. 435, 92–98 (2013)

    Article  Google Scholar 

  9. H. Zhang, C. Ma, J. Wang, X. Wang, H. Bai, J. Liu, Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes. Int. J. Hydrogen Energy 39, 974–986 (2014)

    Article  CAS  Google Scholar 

  10. H. Liao, K. Zhang, G. Xiao, D. Yan, High performance sulfonated poly(phthalazinone ether phosphine oxide)s for proton exchange membranes. J. Membr. Sci. 447, 43–49 (2013)

    Article  CAS  Google Scholar 

  11. K. Mauritz, R. Moore, State of understanding of Nafion. Chem. Rev. 104, 4535–4586 (2004)

    Article  CAS  Google Scholar 

  12. N. Nadermann, E. Davis, K. Page, C. Stafford, E. Chan, Using indentation to quantify transport properties of nanophase-segregated polymer thin films. Adv. Mater. 27, 4924–4930 (2015)

    Article  CAS  Google Scholar 

  13. K. Kreuer, G. Portale, A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications. Adv. Func. Mater. 23, 5390–5397 (2013)

    Article  CAS  Google Scholar 

  14. C. Park, S. Lee, D. Hwang, D. Shin, D. Cho, K. Lee, T. Kim, M. Lee, D. Kim, C. Doherty, A. Thornton, A. Hill, M. Guiver, Y. Lee, Nanocrack-regulated self-humidifying membranes. Nature 532, 480–483 (2016)

    Article  Google Scholar 

  15. N. Li, C. Wang, S. Lee, C. Park, Y. Lee, M. Guiver, Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s. Angew. Chem. Int. Ed. 50, 9158–9161 (2011)

    Article  CAS  Google Scholar 

  16. J. Wang, X. Yue, Z. Zhang, Z. Yang, Y. Li, H. Zhang, X. Yang, H. Wu, Z. Jiang, Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes. Adv. Func. Mater. 22, 4539–4546 (2012)

    Article  CAS  Google Scholar 

  17. A. Anantaraman, C. Gardner, Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion. J. Electroanal. Chem. 414, 115–120 (1996)

    Google Scholar 

  18. Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu, Z. Jiang, Recent advances in the fabrication of advanced composite membranes. J. Mater. Chem. A 1, 10058–10077 (2013)

    Article  CAS  Google Scholar 

  19. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog. Polym. Sci. 38, 1232–1261 (2013)

    Article  CAS  Google Scholar 

  20. W. Wu, Y. Li, J. Liu, J. Wang, Y. He, K. Davey, S. Qiao, Molecular-level hybridization of Nafion with quantum dots for highly enhanced proton conduction. Adv. Mater. 30, 1707516 (2018)

    Article  Google Scholar 

  21. Y. Kim, K. Ketpang, S. Jaritphun, J. Park, S. Shanmugam, A polyoxometalate coupled GO-Nafion composite membrane for fuel cells operating at low relative humidity. J. Mater. Chem. A 3, 8148–8155 (2015)

    Article  CAS  Google Scholar 

  22. Z. Chai, C. Wang, H. Zhang, C. Doherty, B. Ladewig, A. Hill, H. Wang, Nafion-carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchange-membrane fuel cells. Adv. Func. Mater. 20, 4394–4399 (2010)

    Article  CAS  Google Scholar 

  23. H. Pan, Y. Zhang, H. Pu, Z. Chang, Organic–inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole. J. Power Sources 263, 195–202 (2014)

    Google Scholar 

  24. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 38, 1232–1261 (2013)

    Google Scholar 

  25. K. Park, S. Kim, J. Chun, D. Jo, B. Chun, W. Jang, G. Kang, S. Kim, K. Lee, Composite membranes based on a sulfonated poly(arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs. Int. J. Hydrogen Energy 36, 10891–10900 (2011)

    Article  CAS  Google Scholar 

  26. D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. Alemany, W. Lu, J. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  27. J. Wang, H. Zhang, X. Yang, S. Jiang, W. Lv, Z. Jiang, S. Qiao, Enhanced water retention by using polymeric microcapsules to confer high proton conductivity on membranes at low humidity. Adv. Func. Mater. 21, 971–978 (2011)

    Article  CAS  Google Scholar 

  28. Y. Liu, J. Wang, H. Zhang, C. Ma, J. Liu, S. Cao, X. Zhang, Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. J. Power Sources 269, 898–911 (2014)

    Article  CAS  Google Scholar 

  29. Y. He, J. Wang, H. Zhang, T. Zhang, B. Zhang, S. Cao, J. Liu, Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A 2, 9548–9558 (2014)

    Article  CAS  Google Scholar 

  30. L. Vilčiauskas, M. Tuckerman, G. Bester, S. Paddison, K. Kreuer, The mechanism of proton conduction in phosphoric acid. Nat. Chem. 4, 461–466 (2012)

    Article  Google Scholar 

  31. S. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 35, 9349–9384 (2010)

    Article  CAS  Google Scholar 

  32. H. Zhang, T. Zhang, J. Wang, F. Pei, Y. He, J. Liu, Enhanced proton conductivity of sulfonated poly(ether ether ketone) membrane embedded by dopamine-modified nanotubes for proton exchange membrane fuel cell. Fuel Cells 13, 1155–1165 (2013)

    Article  CAS  Google Scholar 

  33. X. Zhang, Z. Hu, Y. Pu, S. Chen, J. Ling, H. Bi, S. Chen, L. Wang, K. Okamoto, Preparation and properties of novel sulfonated poly(p-phenylene-co-aryl ether ketone)s for polymer electrolyte fuel cell applications. J. Power Sources 216, 261–268 (2012)

    Article  CAS  Google Scholar 

  34. M. Kang, M. Lee, Anhydrous solid proton conductors based on perfluorosulfonic ionomer with polymeric solvent for polymer electrolyte fuel cell. Electrochem. Commun. 11, 457–460 (2009)

    Article  CAS  Google Scholar 

  35. G. Liu, H. Zhang, X. Yang, Y. Wang, Facile synthesis of silica/polymer hybrid microspheres and hollow polymer microspheres. Polymer 48, 5896–5904 (2007)

    Article  CAS  Google Scholar 

  36. L. Li, J. Zhang, Y. Wang, Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci. 226, 159–167 (2003)

    Article  CAS  Google Scholar 

  37. L. Zhao, Y. Li, H. Zhang, W. Wu, J. Liu, J. Wang, Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide. J. Power Sources 286, 445–457 (2015)

    Article  CAS  Google Scholar 

  38. H. Tang, G. Ehlert, Y. Lin, H. Sodano, Highly efficient synthesis of graphene nanocomposites. Nano Lett. 12, 84–90 (2012)

    Article  CAS  Google Scholar 

  39. H. Zarrin, D. Higgins, Y. Jun, Z. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774–20781 (2011)

    Article  CAS  Google Scholar 

  40. A. Mishra, S. Bose, T. Kuila, N. Kim, J. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog. Polym. Sci. 37, 842–869 (2012)

    Article  CAS  Google Scholar 

  41. J. Hou, H. Yu, L. Wang, D. Xing, Z. Hou, P. Ming, Z. Shao, B. Yi, Conductivity of aromatic-based proton exchange membranes at subzero temperatures. J. Power Sources 180, 232–237 (2008)

    Article  CAS  Google Scholar 

  42. J. Wang, H. Bai, J. Zhang, L. Zhao, P. Chen, Y. Li, J. Liu, Acid-base block copolymer brushes grafted graphene oxide to enhance proton conduction of polymer electrolyte membrane. J. Membr. Sci. 531, 47–58 (2017)

    Article  CAS  Google Scholar 

  43. K. Kreuer, Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996)

    Article  CAS  Google Scholar 

  44. D. Neugebauer, Two decades of molecular brushes by ATRP. Polymer 72, 413–421 (2015)

    Article  CAS  Google Scholar 

  45. H. Zhang, W. Wu, J. Wang, T. Zhang, B. Shi, J. Liu, S. Cao, Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways. J. Membr. Sci. 476, 136–147 (2015)

    Article  CAS  Google Scholar 

  46. B. Li, B. Yu, Q. Ye, F. Zhou, Tapping the potential of polymer brushes through synthesis. Acc. Chem. Res. 48, 229–237 (2015)

    Article  Google Scholar 

  47. B. Yameen, A. Kaltbeitzel, A. Langer, F. Müller, U. Gösele, W. Knoll, O. Azzaroni, Highly proton-conducting self-humidifying microchannels generated by copolymer brushes on a scaffold. Angew. Chem. Int. Ed. 48, 3124–3128 (2009)

    Article  CAS  Google Scholar 

  48. R. Farina, N. Laugel, P. Pincusc, M. Tirrell, Brushes of strong polyelectrolytes in mixed mono-nd tri-valent ionic media at fixed total ionic strengths. Soft Matter 9, 10458–10472 (2013)

    Article  CAS  Google Scholar 

  49. J. Wang, H. Bai, H. Zhang, L. Zhao, H. Chen, Y. Li, Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim. Acta 152, 443–455 (2015)

    Article  CAS  Google Scholar 

  50. W. Wu, Y. Li, P. Chen, J. Liu, J. Wang, H. Zhang, Constructing ionic liquid-filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide. ACS Appl. Mater. Interfaces 8, 588–599 (2016)

    Article  CAS  Google Scholar 

  51. M. Schuster, W. Meyer, M. Schuster, K. Kreuer, Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem. Mater. 16, 329–337 (2004)

    Article  CAS  Google Scholar 

  52. Z. Li, W. Dai, L. Yu, L. Liu, J. Xi, X. Qiu, L. Chen, Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid−base blend membrane for vanadium redox flow battery application. ACS Appl. Mater. Interfaces. 6, 18885–18893 (2014)

    Article  CAS  Google Scholar 

  53. G. He, J. Zhao, S. Hu, L. Li, Z. Li, Y. Li, Z. Li, H. Wu, X. Yang, Z. Jiang, Functionalized carbon nanotube via distillation precipitation polymerization and its application in Nafion-based composite membranes. ACS Appl. Mater. Interfaces 6, 15291–15301 (2014)

    Article  CAS  Google Scholar 

  54. S. Sekhon, J. Park, J. Baek, S. Yim, T. Yang, C. Kim, Small-angle X-ray scattering study of water free fuel cell membranes containing ionic liquids. Chem. Mater. 22, 803–812 (2010)

    Article  CAS  Google Scholar 

  55. A. Sunda, Ammonium-based protic ionic liquid doped Nafion membranes as anhydrous fuel cell electrolytes. J. Mater. Chem. A 3, 12905–12912 (2015)

    Article  CAS  Google Scholar 

  56. S. Yi, F. Zhang, W. Li, C. Huang, H. Zhang, M. Pan, Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids. J. Membr. Sci. 366, 349–355 (2011)

    Google Scholar 

  57. P. Dimitrova, K. Friedrich, U. Stimming, B. Vogt, Modified Nafion®-based membranes for use in direct methanol fuel cells. Solid State Ionics 150, 115–122 (2002)

    Article  CAS  Google Scholar 

  58. L. Jheng, S. Hsu, T. Tsai, W. Chang, Novel symmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J Mater. Chem. A 2, 4225–4233 (2014)

    Article  CAS  Google Scholar 

  59. K. Feng, B. Tang, P. Wu, “Evaporating” graphene oxide sheets (GOSs) for rolled up goss and its applications in proton exchange membrane fuel cell. ACS Appl. Mater. Interfaces 5, 1481–1488 (2013)

    Article  CAS  Google Scholar 

  60. A. Mishra, T. Kuila, D. Kim, H. Kim, J. Lee, Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. J. Mater. Chem. 22, 24366–24372 (2012)

    Article  CAS  Google Scholar 

  61. H. Zhang, W. Wu, Y. Li, Y. Liu, J. Wang, B. Zhang, J. Liu, Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity. J. Power Sources 279, 667–677 (2015)

    Article  CAS  Google Scholar 

  62. W. Stöber, A. Fink, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1986)

    Article  Google Scholar 

  63. G. He, Y. Li, Z. Li, L. Nie, H. Wu, X. Yang, Y. Zhao, Z. Jiang, Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) composite membrane enabled by the polymer-microcapsules with controllable hydrophilicity-hydrophobicity. J. Power Sources 248, 951–961 (2014)

    Article  CAS  Google Scholar 

  64. G. Li, H. Möhwald, D. Shchukin, Precipitation polymerization for fabrication of complex core-shell hybrid particles and hollow structures. Chem. Soc. Rev. 42, 3628–3646 (2013)

    Article  CAS  Google Scholar 

  65. N. Zhang, B. Wang, Y. Zhang, F. Bu, Y. Cui, X. Li, C. Zhao, H. Na, Mechanically reinforced phosphoric acid doped quaternized poly(ether ether ketone) membranes via cross-linking with functionalized graphene oxide. Chem. Commun. 50, 15381–15384 (2014)

    Article  CAS  Google Scholar 

  66. J. Song, S. Lee, H. Woo, D. Shin, J. Sohn, Y. Lee, J. Shin, EB-crosslinked SPEEK electrolyte membrane with 1,4-butanediol divinyl ether/triallyl isocyanurate for fuel cell application. J. Membr. Sci. 469, 209–215 (2014)

    Google Scholar 

  67. N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, M. Rikukawa, Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: relationship between morphology and proton conduction. Polymer 50, 534–540 (2009)

    Article  CAS  Google Scholar 

  68. B. Yang, A. Manthiram, Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells. J. Power Sources 153, 29–35 (2006)

    Article  CAS  Google Scholar 

  69. J. Wang, S. Jiang, H. Zhang, W. Lv, X. Yang, Z. Jiang, Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres. J. Membr. Sci. 364, 253–262 (2010)

    Article  CAS  Google Scholar 

  70. T. Peckham, S. Holdcroft, Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv. Mater. 22, 4667–4690 (2010)

    Article  CAS  Google Scholar 

  71. Y. Li, S. Wang, G. He, H. Wu, F. Pan, Z. Jiang, Facilitated transport of small molecules and ions for energy-efficient membranes. Chem. Soc. Rev. 44, 103–118 (2015)

    Article  Google Scholar 

  72. J. Jalili, S. Borsacchi, V. Tricoli, Proton conducting membranes in fully anhydrous conditions at elevated temperature: effect of nitrilotris (methylenephosphonic acid) incorporation into Nafion and poly(styrenesulfonic acid). J. Membr. Sci. 469, 162–173 (2014)

    Article  CAS  Google Scholar 

  73. A. Kusoglu, A. Weber, New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017)

    Google Scholar 

  74. J. Pan, C. Chen, Y. Li, L. Wang, L. Tan, G. Li, X. Tang, L. Xiao, J. Lu, L. Zhuang, Constructing ionic highway in alkaline polymer electrolytes. Energy Environ. Sci. 7, 354–362 (2014)

    Article  CAS  Google Scholar 

  75. T. Norsten, M. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. Frankamp, V. Rotello, J. Ding, Highly fluorinated comb-shaped copolymers as proton exchange membranes (pems): improving pem properties through rational design. Adv. Func. Mater. 16, 1814–1820 (2006)

    Article  CAS  Google Scholar 

  76. Y. Chen, M. Thorn, S. Christensen, C. Versek, A. Poe, R. Hayward, M. Tuominen, S. Thayumanavan, Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. Nat. Chem. 2, 503–510 (2010)

    Article  CAS  Google Scholar 

  77. B. Bae, T. Yoda, K. Miyatake, H. Uchida, M. Watanabe, Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. Angew. Chem. Int. Ed. 49, 317–322 (2010)

    Article  CAS  Google Scholar 

  78. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953–3962 (2013)

    Article  CAS  Google Scholar 

  79. A. Tomalia, A. Naylor, W. Goddard III., Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. 29, 138–145 (1990)

    Article  Google Scholar 

  80. M. L. Einsla, Y. S. Kim, M. Hawley, H. S. Lee, J. E. McGrath, B. Liu, M. D. Guiver, B. S. Pivovar, Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity. Chem. Mater. 20, 5636 (2008)

    Google Scholar 

  81. G. Choi, J. Hong, Y. Park, D. Jung, W. Hong, P. Hammond, H. Park, Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 5, 5167–5174 (2011)

    Article  CAS  Google Scholar 

  82. P. Antonucci, A. Aricò, P. Cretı̀, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125, 431–437 (1999)

    Google Scholar 

  83. R. Moore, C. Martin, Chemical and morphological properties of solution-cast perfluorosulfonate ionomers. Macromolecules 21, 1334–1340 (1988)

    Article  CAS  Google Scholar 

  84. T. Kyu, M. Hashiyama, A. Eisenberg, Dynamic mechanical studies of partially ionized and neutralized Nafion polymers. Can. J. Chem. 61, 680–687 (1983)

    Article  CAS  Google Scholar 

  85. S. Gahlot, P.P. Sharma, V. Kulshrestha, P.K. Jha, SGO/SPES-Based Highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl. Mater. Interfaces. 6, 5595–5601 (2014)

    Article  CAS  Google Scholar 

  86. H. Beydaghi, M. Javanbakht, E. Kowsari, Synthesis and characterization of poly(vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind. Eng. Chem. Res. 53, 16621–16632 (2014)

    Article  CAS  Google Scholar 

  87. R. Kumar, C. Xu, K. Scott, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RSC Adv. 2, 8777–8878 (2012)

    Article  CAS  Google Scholar 

  88. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, S. Hou, Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method. Superlattices Microstruct. 49, 644–653 (2011)

    Article  CAS  Google Scholar 

  89. D. Lee, H. Yang, S. Park, W. Kim, Nafion/Graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J. Membr. Sci. 452, 20–28 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, G., Dang, J., Wang, J. (2023). Composite Proton Exchange Membrane for Hydrogen Fuel Cell. In: Wang, J., Wu, W. (eds) Functional Membranes for High Efficiency Molecule and Ion Transport. Springer, Singapore. https://doi.org/10.1007/978-981-19-8155-5_4

Download citation

Publish with us

Policies and ethics