Skip to main content

MixHop Graph WaveNet for Traffic Forecasting

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1693))

Included in the following conference series:

  • 354 Accesses

Abstract

Traffic forecasting is fundamental to realizing intelligent transportation systems (ITS) and challenging due to the complicated spatial dependencies of traffic data and nonlinear temporal trends. Graph convolutional networks (GCNs) have been employed in the latest studies to capture the intricate spatial relationships of roadways. However, due to the intrinsic restrictions of traditional GCNs, these methods cannot represent high-order or mixed neighborhood information. The MixHop Graph WaveNet (MH-GWN), a novel graph neural network architecture for traffic forecasting, is proposed in this research. In MH-GWN, a spatial-temporal convolutional layer that effectively integrates the MixHop graph convolutional layer and the dilated causal convolutional layer is designed, which can aggregate arbitrary-order neighborhood information and model the complex spatial-temporal dependencies of traffic data. Furthermore, via stacking spatial-temporal convolutional layers, the model’s receptive field in the spatial-temporal domain can be exponentially improved. Extensive experiments on two real-world road network traffic datasets show that MH-GWN model is better than other baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: ICLR (2018)

    Google Scholar 

  2. Lv, Z., Xu, J., Zheng, K., Yin, H., Zhao, P., Zhou, X.: LC-RNN: a deep learning model for traffic speed prediction. In: IJCAI-2018, pp. 3470–3476, July 2018. https://doi.org/10.24963/ijcai.2018/482

  3. Zheng, C., Fan, X., Wen, C., Chen, L., Wang, C., Li, J.: DeepSTD: mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3744–3755 (2020). https://doi.org/10.1109/TITS.2019.2932785

    Article  Google Scholar 

  4. Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transp. Res. Rec. (1979). http://onlinepubs.trb.org/Onlinepubs/trr/1979/722/722-001.pdf

  5. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129, 664–672 (2003). https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)

    Article  Google Scholar 

  6. Shekhar, S.S.R., Williams, B.M.: Adaptive seasonal time series models for forecasting short-term traffic flow. Transp. Res. Rec. 2024, 116–125 (2007). https://doi.org/10.3141/2024-14

    Article  Google Scholar 

  7. Li, X., et al.: Prediction of urban human mobility using large-scale taxi traces and its applications. Front. Comput. Sci. 6, 111–121 (2011). https://doi.org/10.1007/s11704-011-1192-6

    Article  MathSciNet  Google Scholar 

  8. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Predicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 14, 1393–1402 (2013). https://doi.org/10.1109/TITS.2013.2262376

    Article  Google Scholar 

  9. Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Trans. Intell. Transp. Syst. 14, 871–882 (2013). https://doi.org/10.1109/TITS.2013.2247040

    Article  Google Scholar 

  10. Wagner-Muns, I.M., Guardiola, I.G., Samaranayke, V.A., Kayani, W.I.: A functional data analysis approach to traffic volume forecasting. IEEE Trans. Intell. Transp. Syst. 19, 878–888 (2018). https://doi.org/10.1109/TITS.2017.2706143

    Article  Google Scholar 

  11. Li,Z., Sergin, N., Yan, H., Zhang, C., Tsung, F.: Tensor completion for weakly-dependent data on graph for metro passenger flow prediction. In: AAAI (2020). https://doi.org/10.1609/aaai.v34i04.5915

  12. Duan, P., Mao, G., Liang, W., Zhang, D.: A unified spatio-temporal model for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 20, 3212–3223 (2019). https://doi.org/10.1109/TITS.2018.2873137

    Article  Google Scholar 

  13. Shin, J., Sunwoo, M.: Vehicle speed prediction using a Markov chain with speed constraints. IEEE Trans. Intell. Transp. Syst. 20, 3201–3211 (2019). https://doi.org/10.1109/TITS.2018.2877785

    Article  Google Scholar 

  14. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17 (2017). https://doi.org/10.3390/s17040818

  15. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., Li, T.: Predicting citywide crowd flows using deep spatio-temporal residual networks. ArXiv, abs/1701.02543 (2018). https://doi.org/10.1016/j.artint.2018.03.002

  16. Liu, H., Zhang, X., Yang, Y., Li, Y., Yu, C.: Hourly traffic flow forecasting using a new hybrid modelling method. J. Central South Univ. 29(04), 1389–1402 (2022). https://doi.org/10.1007/s11771-022-5000-2

    Article  Google Scholar 

  17. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI-2018, pp. 3634–3640 (2018). https://doi.org/10.24963/ijcai.2018/505

  18. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. In: IJCAI-2019, pp. 1907–1913. International Joint Conferences on Artificial Intelligence Organization, July 2019. https://doi.org/10.24963/ijcai.2019/264

  19. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. ArXiv, abs/1609.02907 (2017). https://doi.org/10.48550/arxiv.1609.02907

  20. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS (2016). https://doi.org/10.48550/arxiv.1606.09375

  21. Abu-El-Haija, S., et al.: MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: ICML (2019). https://doi.org/10.48550/ARXIV.1905.00067

  22. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR, abs/1511.07122 (2016). https://doi.org/10.48550/arxiv.1511.07122

  23. Ma, T., Kuang, P., Tian, W.: An improved recurrent neural networks for 3D object reconstruction. Appl. Intell. 50(3), 905–923 (2019). https://doi.org/10.1007/s10489-019-01523-3

    Article  Google Scholar 

  24. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013). https://doi.org/10.1109/MSP.2012.2235192

    Article  Google Scholar 

  25. van den Oord, A., et al.: WaveNet: a generative model for raw audio. ArXiv, abs/1609.03499 (2016). https://doi.org/10.48550/ARXIV.1609.03499

  26. Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., Feng, X.: Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In: AAAI (2020). https://doi.org/10.1609/aaai.v34i04.5758

  27. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: AAAI (2019). https://doi.org/10.1609/aaai.v33i01.3301922

  28. Huang, R., Huang, C., Liu, Y., Dai, G., Kong, W.: LSGCN: long short-term traffic prediction with graph convolutional networks. In: IJCAI (2020). https://doi.org/10.24963/ijcai.2020/326

  29. Roy, A., Roy, K.K., Ali, A.A., Amin, M.A., Rahman, A.K.M.M.: Unified spatio-temporal modeling for traffic forecasting using graph neural network. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2021). https://doi.org/10.1109/IJCNN52387.2021.9533319

Download references

Acknowledgments

Research in this article is supported by the National Natural Science Foundation of China (No. 62177014), and Research Foundation of Hunan Provincial Education Department of China (No. 19A174, 20B222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ba, B., Fu, Q., Hang, C., Jiang, Y. (2022). MixHop Graph WaveNet for Traffic Forecasting. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics