Skip to main content

Comparative Analysis of Various Standards for Medical Image Compression

  • Conference paper
  • First Online:
International Symposium on Intelligent Informatics (ISI 2022)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 333))

Included in the following conference series:

  • 164 Accesses

Abstract

For efficient storage and transmitting of medical images over the internet, an adequate compression method is necessary. Modern healthcare services that rely on cloud computing use such compression methods, as often we are limited by internet bandwidth and memory to store these medical images on cloud servers. The Digital Imaging and Communications in Medicine (DICOM), which is the standard currently used for transmission and handling communication of medical data uses the JPEG-2000 standard for compression. Recent impressive advancement in computer hardware and software leads to new compression methods to be developed and used widely for many applications. High-Efficiency Video Coding (HEVC/H.265/x265) is a video coding standard that has intra-frame coding for still medical images such as X-rays, MRIs, CT Scans, etc and as an advanced video coding standard, it supports compression of medical videos such as ultrasound and sonography. HEVC can be a single format that can support the compression of still Medical images, images series, and videos as well as modern medical imaging such as 3-D X-rays and 3-D Ultrasound. This study illustrates the utilization of HEVC for the compression of Medical images and a comparison of various compression techniques that have been used here for medical image compression. The Lossless compression performance of HEVC is compared to JPEG -2000 for grayscale and RGB images. Experimental results show, that in lossless mode, HEVC performs up to \({\sim }15\%\) better for grayscale and \({\sim }17\%\) better for RGB images. For lossy mode, HEVC accomplishes better results than JPEG, JPEG-2000 and AVC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.S. Parikh, D. Ruiz, H. Kalva, G. Fernández-Escribano, V. Adzic, High bit-depth medical image compression with hevc. IEEE J. Biomed. Health Inform. 22(2), 552–560 (2017)

    Article  Google Scholar 

  2. P. Mildenberger, M. Eichelberg, E. Martin, Introduction to the DICOM standard. Eur. Radiol. 12(4), 920–927 (2002)

    Article  Google Scholar 

  3. T. Bruylants, A. Munteanu, P. Schelkens, Wavelet based volumetric medical image compression. Signal process. Image commun. 31, 112–133 (2015)

    Article  Google Scholar 

  4. N. Sathiyanathan, Medical image compression using view compensated wavelet transform. J. Glob. Res. Comput. Sci. 9(9), 01–04 (2018)

    Google Scholar 

  5. S. UmaMaheswari, V. SrinivasaRaghavan, Lossless medical image compression algorithm using tetrolet transformation. J. Ambient. Intell. Humaniz. Comput. 12(3), 4127–4135 (2021)

    Article  Google Scholar 

  6. S. Singh, V. Kumar, H.K. Verma, DWT-DCT hybrid scheme for medical image compression. J. Med. Eng. Technol. 31(2), 109–122 (2007)

    Article  Google Scholar 

  7. A.M. Rufai, G. Anbarjafari, H. Demirel, Lossy medical image compression using Huffman coding and singular value decomposition. In: 2013 21st Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE (2013)

    Google Scholar 

  8. R. Srikanth, A.G. Ramakrishnan, Contextual encoding in uniform and adaptive mesh-based lossless compression of MR images. IEEE Trans. Med. Imaging 24(9), 1199–1206 (2005)

    Article  Google Scholar 

  9. S. Juliet, E.B. Rajsingh, K. Ezra, A novel medical image compression using Ripplet transform. J. Real-Time Image Proc. 11(2), 401–412 (2016)

    Article  Google Scholar 

  10. A.S. Arif, S. Mansor, R. Logeswaran, H.A. Karim, Auto-shape lossless compression of pharynx and esophagus fluoroscopic images. J. Med. Syst. 39(2), 1–7 (2015)

    Article  Google Scholar 

  11. M.S. Ibraheem, S. Z. Ahmed, K. Hachicha, S. Hochberg, P. Garda, Medical images compression with clinical diagnostic quality using logarithmic DWT. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 402–405). IEEE (2016)

    Google Scholar 

  12. L.F. Lucas, N.M. Rodrigues, L.A. da Silva Cruz, S.M. de Faria, Lossless compression of medical images using 3-D predictors. IEEE Trans. Med. Imaging 36(11), 2250–2260 (2017)

    Article  Google Scholar 

  13. Z. Zuo, X. Lan, L. Deng, S. Yao, X. Wang, An improved medical image compression technique with lossless region of interest. Optik 126(21), 2825–2831 (2015)

    Article  Google Scholar 

  14. M. Raza, A. Adnan, M. Sharif, S.W. Haider, Lossless compression method for medical Image sequences using super-spatial structure prediction and Inter-frame coding. J. Appl. Res. Technol. 10(4), 618–628 (2012)

    Article  Google Scholar 

  15. V. Anusuya, V.S. Raghavan, G. Kavitha, Lossless compression on MRI images using SWT. J. Digit. Imaging 27(5), 594–600 (2014)

    Article  Google Scholar 

  16. G.K. Wallace, The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)

    Google Scholar 

  17. A. Skodras, C. Christopoulos, T. Ebrahimi, The jpeg 2000 still image compression standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001)

    Article  MATH  Google Scholar 

  18. G.J. Sullivan, P.N. Topiwala, A. Luthra, The H. 264/AVC advanced video coding standard: Overview and introduction to the fidelity range extensions. Appl. Digit. Image Process. XXVII 5558, 454–474 (2004)

    Google Scholar 

  19. G.J. Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  20. Q. Cai, L. Song, G. Li, N. Ling. Lossy and lossless intra coding performance evaluation: HEVC, H. 264/AVC, JPEG 2000 and JPEG LS. In: Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (pp. 1–9). IEEE (2012)

    Google Scholar 

  21. J. Zeng, O.C. Au, W. Dai, Y. Kong, L. Jia, W. Zhu, A tutorial on image/video coding standards. In: 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (pp. 1–7). IEEE (2013)

    Google Scholar 

  22. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  23. Medical image samples, Medical Imaging : Samples. Retrieved from https://barre.dev/medical/samples/

  24. I. Skiljan, IrfanView (2012). Retrieved from http://irfanviewtuwien.ac.at/

  25. Advanced Video Coding (H.264/AVC). Retrieved from https://avc.hhi.fraunhofer.de/

  26. HEVC Format Range Extension (RExt). Retrieved from https://hevc.hhi.fraunhofer.de/rext

  27. OpenJPEG. Retrieved from https://www.openjpeg.org/

  28. F. Bossen, B. Bross, K. Suhring, D. Flynn, HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012)

    Article  Google Scholar 

  29. S.E. Ghrare, M.A.M. Ali, M. Ismail, K. Jumari, Diagnostic quality of compressed medical images: Objective and subjective evaluation. In: 2008 Second Asia International Conference on Modelling and Simulation (AMS) (pp. 923–927). IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Metkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishware, T., Metkar, S. (2023). Comparative Analysis of Various Standards for Medical Image Compression. In: Thampi, S.M., Mukhopadhyay, J., Paprzycki, M., Li, KC. (eds) International Symposium on Intelligent Informatics. ISI 2022. Smart Innovation, Systems and Technologies, vol 333. Springer, Singapore. https://doi.org/10.1007/978-981-19-8094-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8094-7_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8093-0

  • Online ISBN: 978-981-19-8094-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics