Skip to main content

Nanotechnology in Drug Delivery

  • Chapter
  • First Online:
Nanotechnology in Modern Medicine

Abstract

A biologically active substance (chemical compound, peptide, antibodies, gene-based drugs etc.) capable of producing a therapeutic effect can be administered to the body via different routes. However, the limited aqueous solubility, low permeability, non-specific distribution, poor bioavailability, rapid clearance and uncontrollable release of drugs are among the main challenges in achieving the therapeutic efficacy of these agents. In this respect, the properties of nanomaterials like small particle size, surface charge, shape etc. can be exploited for the development of effective drug delivery systems. These novel nano-drug delivery systems can circumvent the problems associated with conventional drug delivery approaches and allow targeted and site-specific delivery of therapeutic agents while mitigating the adverse effects. This chapter provides an overview of novel nano-drug delivery platforms developed against different disease conditions and signifies their potential in future medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, C.M., Clark-Garvey, S., Porcu, P., Eischen, C.M.: Targeting the Bcl-2 family in B cell lymphoma. Front. Oncol. 8, 636 (2019). https://doi.org/10.3389/fonc.2018.00636

    Article  Google Scholar 

  • Adjei, I.M., Temples, M.N., Brown, S.B., Sharma, B.: Targeted nanomedicine to treat bone metastasis. Pharmaceutics 10(4), 205 (2018). https://doi.org/10.3390/pharmaceutics10040205

    Article  Google Scholar 

  • Ali, T., Kim, M.J., Rehman, S.U., Ahmad, A., Kim, M.O.: Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease. Mol. Neurobiol. 54(8), 6490–6506 (2017)

    Article  Google Scholar 

  • Anand, B.G., Wu, Q., Karthivashan, G., Shejale, K.P., Amidian, S., Wille, H., Kar, S.: Mimosine functionalized gold nanoparticles (Mimo-AuNPs) suppress β-amyloid aggregation and neuronal toxicity. Bioact. Mater. 6(12), 4491–4505 (2021)

    Article  Google Scholar 

  • Bao, W., Xie, L., Zeng, X., Kang, H., Wen, S., Cui, B., Li, W., Qian, Y., Wu, J., Li, T., Deng, K., Xin, H.B., Wang, X.: A cocktail-inspired male birth control strategy with physical/chemical dual contraceptive effects and remote self-cleared properties. ACS Nano 13(2), 1003–1011 (2019)

    Google Scholar 

  • Bataller, R., Brenner, D.A.: Liver fibrosis. J. Clin. Investig. 115(2), 209–218 (2005)

    Article  Google Scholar 

  • Bartneck, M., Scheyda, K.M., Warzecha, K.T., Rizzo, L.Y., Hittatiya, K., Luedde, T., Storm, G., Trautwein, C., Lammers, T., Tacke, F.: Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases. Biomaterials 37, 367–382 (2015)

    Article  Google Scholar 

  • Bedin, A., Maranhão, R.C., Tavares, E.R., Carvalho, P.O., Baracat, E.C., Podgaec, S.: Nanotechnology for the treatment of deep endometriosis: uptake of lipid core nanoparticles by LDL receptors in endometriotic foci. Clinics 74, e989 (2019). https://doi.org/10.6061/clinics/2019/e989

    Article  Google Scholar 

  • Boarescu, P.M., Boarescu, I., BocÈ™an, I.C., Pop, R.M., Gheban, D., Bulboacă, A.E., Nicula, C., Râjnoveanu, R.M., Bolboacă, S.D.: Curcumin nanoparticles protect against isoproterenol induced myocardial infarction by alleviating myocardial tissue oxidative stress, electrocardiogram, and biological changes. Molecules 24(15), 2802 (2019). https://doi.org/10.3390/molecules24152802

    Article  Google Scholar 

  • Bumcrot, D., Manoharan, M., Koteliansky, V., Sah, D.W.Y.: RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2, 711–719 (2006)

    Article  Google Scholar 

  • Camara, C.I., Bertocchi, L., Ricci, C., Bassi, R., Bianchera, A., Cantu’, L., Bettini, R., Del Favero, E.: Hyaluronic acid-dexamethasone nanoparticles for local adjunct therapy of lung inflammation. Int. J. Mol. Sci. 22(19), 10480 (2021). https://doi.org/10.3390/ijms221910480

    Article  Google Scholar 

  • Chandrasekaran, B., Deb, P.K., Bayan, M.F., Al-Bataineh, Y., Aga, Q. A. A-K., Jaradat, D.M.M., Balaraman, A.K.: Nanocarriers in novel drug delivery system. In: Anand, K., Saravanan, M., Chandrasekaran, B., Kanchi, S., Panchu, S.J., Chen, Q. (eds.) Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications, pp. 421–437. Elsevier, Amsterdam, The Netherlands (2021)

    Google Scholar 

  • Chen, Y.N., Hsu, S.L., Liao, M.Y., Liu, Y.T., Lai, C.H., Chen, J.F., Nguyen, M.T., Su, Y.H., Chen, S.T., Wu, L.C.: Ameliorative effect of curcumin-encapsulated hyaluronic acid-PLA nanoparticles on thioacetamide-induced murine hepatic fibrosis. Int. J. Environ. Res. Public Health 14(1), 11 (2016). https://doi.org/10.3390/ijerph14010011

    Article  Google Scholar 

  • Choi, S.H., Byeon, H.J., Choi, J.S., Thao, L., Kim, I., Lee, E.S., Shin, B.S., Lee, K.C., Youn, Y.S.: Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Control Release 197, 199–207 (2015)

    Article  Google Scholar 

  • Dykxhoorn, D.M., Lieberman, J.: Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu. Rev. Biomed. Eng. 8, 377–402 (2006)

    Article  Google Scholar 

  • Elazar, V., Adwan, H., Bäuerle, T., Rohekar, K., Golomb, G., Berger, M.R.: Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis. Int. J. Cancer 126(7), 1749–1760 (2010)

    Google Scholar 

  • Ensign, L.M., Cone, R., Hanes, J.: Nanoparticle-based drug delivery to the vagina: a review. J. Control Release 190(500–514), 2014 (2014)

    Google Scholar 

  • Gan, H., Chen, L., Sui, X., Wu, B., Zou, S., Li, A., Zhang, Y., Liu, X., Wang, D., Cai, S., Liu, X., Liang, Y., Tang, X.: Enhanced delivery of sorafenib with anti-GPC3 antibody-conjugated TPGS-b-PCL/Pluronic P123 polymeric nanoparticles for targeted therapy of hepatocellular carcinoma. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 395–403 (2018)

    Google Scholar 

  • Gao, N., Sun, H., Dong, K., Ren, J., Qu, X.: Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 21(2), 829–835 (2015)

    Article  Google Scholar 

  • Hu, K., Chen, X., Chen, W., Zhang, L., Li, J., Ye, J., Zhang, Y., Zhang, L., Li, C.H., Yin, L., Guan, Y.Q.: Neuroprotective effect of gold nanoparticles composites in Parkinson's disease model. Nanomed. Nanotechnol. Biol. Med. 14(4), 1123–1136 (2018a)

    Google Scholar 

  • Hu, L.X., Hu, S.F., Rao, M., Yang, J., Lei, H., Duan, Z., Xia, W., Zhu, C.: Studies of acute and subchronic systemic toxicity associated with a copper/low-density polyethylene nanocomposite intrauterine device. Int. J. Nanomed. 13, 4913–4926 (2018b)

    Article  Google Scholar 

  • Huang, R., Ke, W., Liu, Y., Wu, D., Feng, L., Jiang, C., Pei, Y.: Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J. Neurol. Sci. 290(1–2), 123–130 (2010)

    Article  Google Scholar 

  • Iyer, A.K., Singh, A., Ganta, S., Amiji, M.M.: Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 65(13–14), 1784–1802 (2013)

    Article  Google Scholar 

  • Jensen, D.K., Jensen, L.B., Koocheki, S., Bengtson, L., Cun, D., Nielsen, H.M., Foged, C.: Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J. Control Release 157(1), 141–148 (2012)

    Article  Google Scholar 

  • Jøraholmen, M.W., Basnet, P., Acharya, G., Å kalko-Basnet, N.: PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur. J. Pharm. Biopharm. 113, 132–139 (2017)

    Article  Google Scholar 

  • Kang, Y.J., Cutler, E.G., Cho, H.: Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg. 5, 35 (2018). https://doi.org/10.1186/s40580-018-0168-8

    Article  Google Scholar 

  • Khanna, V.K.: Targeted delivery of nanomedicines. Int. Ch. Res. Notices 2012, 571394 (2012). https://doi.org/10.5402/2012/571394

    Article  ADS  Google Scholar 

  • Kim, I., Byeon, H.J., Kim, T.H., Lee, E.S., Oh, K.T., Shin, B.S., Lee, K.C., Youn, Y.S.: Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials 34(27), 6444–6453 (2013)

    Article  Google Scholar 

  • Kim, B., Lee, C., Lee, E.S., Shin, B.S., Youn, Y.S.: Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J. Pharm. Sci. 11(6), 708–714 (2016)

    Article  Google Scholar 

  • Klanova, M., Klener, P.: BCL-2 proteins in pathogenesis and therapy of B-cell non-Hodgkin lymphomas. Cancers 12(4), 938 (2020). https://doi.org/10.3390/cancers12040938

    Article  Google Scholar 

  • Kruger, T.E., Miller, A.H., Godwin, A.K., Wang, J.: Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit. Rev. Oncol. Hematol. 89(2), 330–341 (2014)

    Article  Google Scholar 

  • Lee, H., Jeong S. W., Jung, E., Lee, D.: Dexamethasone-loaded H2O2-activatable anti-inflammatory nanoparticles for on-demand therapy of inflammatory respiratory diseases. Nanomed. Nanotechnol. Biol. Med. 30, 102301 (2020). https://doi.org/10.1016/j.nano.2020.102301

  • Li, Z., Ye, L., Liu, J., Lian, D., Li, X.: Sorafenib-loaded nanoparticles based on biodegradable dendritic polymers for enhanced therapy of hepatocellular carcinoma. Int. J. Nanomed. 15, 1469–1480 (2020)

    Article  Google Scholar 

  • Lin, T., Gao, D.Y., Liu, Y.C., Sung, Y.C., Wan, D., Liu, J.Y., Chiang, T., Wang, L., Chen, Y.: Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J. Control Release 221, 62–70 (2016)

    Article  Google Scholar 

  • Lu, H., Wang, J., Wang, T., Zhong, J., Bao, Y., Hao, H.: Recent progress on nanostructures for drug delivery applications. J. Nanomater. 2016, 5762431 (2016). https://doi.org/10.1155/2016/5762431

    Article  Google Scholar 

  • Lusis, A.: Atherosclerosis. Nature 407, 233–241 (2000)

    Article  Google Scholar 

  • Mirza, A.Z., Siddiqui, F.A.: Nanomedicine and drug delivery: a mini review. Int. Nano Lett. 4, 94 (2014). https://doi.org/10.1007/s40089-014-0094-7

    Article  Google Scholar 

  • Moldoveanu, B., Otmishi, P., Jani, P., Walker, J., Sarmiento, X., Guardiola, J., Saad, M., Yu, J.: Inflammatory mechanisms in the lung. J. Inflamm. Res. 2, 1–11 (2009)

    Google Scholar 

  • Nakano, Y., Matoba, T., Tokutome, M., Funamoto, D., Katsuki, S., Ikeda, G., Nagaoka, K., Ishikita, A., Nakano, K., Koga, J., Sunagawa, K., Egashira, K.: Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation. Sci. Rep. 6, 29601 (2016). https://doi.org/10.1038/srep29601

    Article  ADS  Google Scholar 

  • Pala, R., Anju, V.T., Dyavaiah, M., Busi, S., Nauli, S.M.: Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int. J. Nanomed. 15, 3741–3769 (2020)

    Article  Google Scholar 

  • Palekar, R.U., Jallouk, A.P., Myerson, J.W., Pan, H., Wickline, S.A.: Inhibition of thrombin with PPACK-nanoparticles restores disrupted endothelial barriers and attenuates thrombotic risk in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 36(3), 446–455 (2016a)

    Article  Google Scholar 

  • Palekar, R.U., Vemuri, C., Marsh, J.N., Arif, B., Wickline, S.A.: Antithrombin nanoparticles inhibit stent thrombosis in ex vivo static and flow models. J. Vasc. Surg. 64(5), 1459–1467 (2016b)

    Article  Google Scholar 

  • OsmaÅ‚ek, T., Froelich, A., Jadach, B., Tatarek, A., GadziÅ„ski, P., Falana, A., GraliÅ„ska, K., Ekert, M., Puri, V., WrotyÅ„ska-BarczyÅ„ska, J., Michniak-Kohn, B.: Recent advances in polymer-based vaginal drug delivery systems. Pharmaceutics 13(6), 884 (2021). https://doi.org/10.3390/pharmaceutics13060884

    Article  Google Scholar 

  • Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M. del P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H-S.: Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8

  • Pérez-Herrero, E., Fernández-Medarde, A.: Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93, 52–79 (2015)

    Article  Google Scholar 

  • Poilil Surendran, S., George Thomas, R., Moon, M.J., Jeong, Y.Y.: Nanoparticles for the treatment of liver fibrosis. Int. J. Nanomed. 12, 6997–7006 (2017)

    Article  Google Scholar 

  • Purohit, T.J., Hanning, S.M., Wu, Z.: Advances in rectal drug delivery systems. Pharm. Dev. Technol. 23(10), 942–952 (2018)

    Article  Google Scholar 

  • Rinaldi, C., Wood, M.: Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018)

    Article  Google Scholar 

  • Sánchez, A., Mejía, S.P., Orozco, J.: Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules 25, 3760 (2020). https://doi.org/10.3390/molecules25163760

    Article  Google Scholar 

  • Santos, S.S., Lorenzoni, A., Pegoraro, N.S., Denardi, L.B., Alves, S.H., Schaffazick, S.R., Cruz, L.: Formulation and in vitro evaluation of coconut oil-core cationic nanocapsules intended for vaginal delivery of clotrimazole. Colloids Surf B Biointerfaces 116, 270–276 (2014)

    Article  Google Scholar 

  • Schmidt, M., Sachse, C., Richter, W., Xu, C., Fändrich, M., Grigorieff, N.: Comparison of Alzheimer Aβ(1–40) and Aβ(1–42) amyloid fibrils reveals similar protofilament structures. Proc. Natl. Acad. Sci. USA 106(47), 19813–19818 (2009)

    Article  ADS  Google Scholar 

  • Schultheis, B., Strumberg, D., Santel, A., Vank, C., Gebhardt, F., Keil, O., Lange, C., Giese, K., Kaufmann, J., Khan, M., Drevs, J.: First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 32(36), 4141–4148 (2014)

    Article  Google Scholar 

  • Seo, Y.G., Kim, D.W., Yeo, W.H., Ramasamy, T., Oh, Y.K., Park, Y.J., Kim, J.A., Oh, D.H., Ku, S.K., Kim, J.K., Yong, C.S., Kim, J.O., Choi, H.G.: Docetaxel-loaded thermosensitive and bioadhesive nanomicelles as a rectal drug delivery system for enhanced chemotherapeutic effect. Pharm. Res. 30(7), 1860–1870 (2013). https://doi.org/10.1007/s11095-013-1029-0

    Article  Google Scholar 

  • Sharifi-Rad, J., Hoseini Alfatemi, S., Sharifi Rad, M., Iriti, M.: Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann. Med. Health Sci. Res. 4(6), 863–868 (2014)

    Article  Google Scholar 

  • Singh, A.K., Chakravarty, B., Chaudhury, K.: Nanoparticle-assisted combinatorial therapy for effective treatment of endometriosis. J. Biomed. Nanotechnol. 11(5), 789–804 (2015)

    Article  Google Scholar 

  • Steinbach, J.M., Weller, C.E., Booth, C.J., Saltzman, W.M.: Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J. Control Release 162(1), 102–110 (2012)

    Article  Google Scholar 

  • Sun, Y.L., Patel, A., Kumar, P., Chen, Z.S.: Role of ABC transporters in cancer chemotherapy. Chin. J. Cancer 31(2), 51–57 (2012)

    Article  Google Scholar 

  • Sun, W., Hu, Q., Ji, W., Wright, G., Gu, Z.: Leveraging physiology for precision drug delivery. Physiol. Rev. 97(1), 189–225 (2017)

    Article  Google Scholar 

  • Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020-GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Article  Google Scholar 

  • Suri, S.S., Fenniri, H., Singh, B.: Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2, 16 (2007). https://doi.org/10.1186/1745-6673-2-16

    Article  Google Scholar 

  • Tao, W., Zeng, X., Liu, T., Wang, Z., Xiong, Q., Ouyang, C., Huang, L., Mei, L.: Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 9(11), 8910–8920 (2013)

    Article  Google Scholar 

  • Taylor, E., Webster, T.J.: Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomed. 6, 1463–1473 (2011)

    Google Scholar 

  • Tenland, E., Pochert, A., Krishnan, N., Umashankar Rao, K., Kalsum, S., Braun, K., Glegola-Madejska, I., Lerm, M., Robertson, B.D., Lindén, M., Godaly, G.: Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE 14(2), e0212858 (2019). https://doi.org/10.1371/journal.pone.0212858

    Article  Google Scholar 

  • Tian, A., Yang, C., Zhu, B., Wang, W., Liu, K., Jiang, Y., Qiao, Y., Fu, H., Li, Z.: Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice. Can. J. Physiol. Pharmacol. 96(12), 1318–1327 (2018)

    Article  Google Scholar 

  • Tolcher, A.W., Rodrigueza, W.V., Rasco, D.W., Patnaik, A., Papadopoulos, K.P., Amaya, A., Moore, T.D., Gaylor, S.K., Bisgaier, C.L., Sooch, M.P., Woolliscroft, M.J., Messmann, R.A.: A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73(2), 363–371 (2014)

    Article  Google Scholar 

  • Vega-Vásquez, P., Mosier, N.S., Irudayaraj, J.: Nanoscale drug delivery systems: from medicine to agriculture. Front. Bioeng. Biotechnol. 8, 79 (2020). https://doi.org/10.3389/fbioe.2020.00079

    Article  Google Scholar 

  • Walvekar, P., Gannimani, R., Govender, T.: Combination drug therapy via nanocarriers against infectious diseases. Eur. J. Pharm. Sci. 127, 121–141 (2019)

    Article  Google Scholar 

  • Wang, K., Guo, L., Xiong, W., Sun, L., Zheng, Y.: Nanoparticles of star-like copolymer mannitol-functionalized poly(lactide)-vitamin E TPGS for delivery of paclitaxel to prostate cancer cells. J. Biomater. Appl. 29(3), 329–340 (2014)

    Article  Google Scholar 

  • Wang, Y., Yuan, Q., Feng, W., Pu, W., Ding, J., Zhang, H., Li, X., Yang, B., Dai, Q., Cheng, L., Wang, J., Sun, F., Zhang, D.: Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J. Nanobiotechnol. 17(1), 103 (2019). https://doi.org/10.1186/s12951-019-0537-4

    Article  Google Scholar 

  • Woodrow, K.A., Cu, Y., Booth, C.J., Saucier-Sawyer, J.K., Wood, M.J., Saltzman, W.M.: Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater. 8(6), 526–533 (2009)

    Article  ADS  Google Scholar 

  • Wu, B., Liang, Y., Tan, Y., Xie, C., Shen, J., Zhang, M., Liu, X., Yang, L., Zhang, F., Liu, L., Cai, S., Huai, D., Zheng, D., Zhang, R., Zhang, C., Chen, K., Tang, X., Sui, X.: Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 59, 792–800 (2016)

    Google Scholar 

  • Wu, L., Zhou, W., Lin, L., Chen, A., Feng, J., Qu, X., Zhang, H., Yue, J.: Delivery of therapeutic oligonucleotides in nanoscale. Bioact. Mater. 7, 292–323 (2021)

    Article  Google Scholar 

  • Xu, Y., Hun, X., Liu, F., Wen, X., Luo, X.: Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe. Mikrochim. Acta 182, 1797–1802 (2015)

    Article  Google Scholar 

  • Yan, M., Zhang, Y., Wu, Z., Li, Y., Dou, K., Wang, B., Wang, Y., Zhou, Q.: Recent progress in advanced biomaterials for long-acting reversible contraception. J. Nanobiotechnol. 20, 138 (2022). https://doi.org/10.1186/s12951-022-01329-5

    Article  Google Scholar 

  • Yang, L., Yin, T., Liu, Y., Sun, J., Zhou, Y., Liu, J.: Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer's disease treatment. Acta Biomater. 46, 177–190 (2016). https://doi.org/10.1016/j.actbio.2016.09.010. Epub 2016 Sep 9. PMID: 27619837

  • Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., Shao, A.: Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 7, 193 (2020). https://doi.org/10.3389/fmolb.2020.00193

    Article  Google Scholar 

  • Yeh, Y.-C., Huang, T.-H., Yang, S.-C., Chen, C.-C., Fang, J.-Y.: Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front. Chem. 8, 286 (2020). https://doi.org/10.3389/fchem.2020.00286

    Article  ADS  Google Scholar 

  • You, L., Wang, J., Liu, T., Zhang, Y., Han, X., Wang, T., Guo, S., Dong, T., Xu, J., Anderson, G.J., Liu, Q., Chang, Y.Z., Lou, X., Nie, G.: Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano 12(5), 4123–4139 (2018)

    Article  Google Scholar 

  • Yunus Basha, R., Sampath Kumar, T.S., Doble, M.: Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr. Polym. 218, 53–62 (2019)

    Google Scholar 

  • Zeng, X., Tao, W., Mei, L., Huang, L., Tan, C., Feng, S.S.: Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34(25), 6058–6067 (2013)

    Article  Google Scholar 

  • Zhang, J., Tao, W., Chen, Y., Chang, D., Wang, T., Zhang, X., Mei, L., Zeng, X., Huang, L.: Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J. Mater. Sci. Mater. Med. 26(4), 165 (2015). https://doi.org/10.1007/s10856-015-5498-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayuri Napagoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Napagoda, M., Witharana, S. (2023). Nanotechnology in Drug Delivery. In: Witharana, S., Napagoda, M.T. (eds) Nanotechnology in Modern Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-8050-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8050-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8049-7

  • Online ISBN: 978-981-19-8050-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics