Skip to main content

Phishing Fraud Detection on Ethereum Using Graph Neural Network

  • Conference paper
  • First Online:
Blockchain and Trustworthy Systems (BlockSys 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1679))

Included in the following conference series:

Abstract

Blockchain has widespread applications in the financial field but has also attracted increasing cybercrimes. Recently, phishing fraud has emerged as a major threat to blockchain security, calling for the development of effective regulatory strategies. Nowadays network science has been widely used in modeling Ethereum transaction data, further introducing the network representation learning technology to analyze the transaction patterns. In this paper, we consider phishing detection as a graph classification task and propose an end-to-end Phishing Detection Graph Neural Network framework (PDGNN). Specifically, we first construct a lightweight Ethereum transaction network and extract transaction subgraphs of collected phishing accounts. Then we propose an end-to-end detection model based on Chebyshev-GCN to precisely distinguish between normal and phishing accounts. Extensive experiments on five Ethereum datasets demonstrate that our PDGNN significantly outperforms general phishing detection methods and scales well in large transaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://etherscan.io/.

References

  1. Holub, A., O’Connor, J.: Coinhoarder: tracking a Ukrainian bitcoin phishing ring DNS style. In: 2018 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–5. IEEE (2018)

    Google Scholar 

  2. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues of bitcoin. IEEE Commun. Surv. Tutor. 20(4), 3416–3452 (2018)

    Article  Google Scholar 

  3. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on ethereum: identification, analysis, and impact. Future Gener. Comput. Syst. 102, 259–277 (2020)

    Article  Google Scholar 

  4. Wu, J., et al.: Who are the phishers? Phishing scam detection on ethereum via network embedding. IEEE Trans. Syst. Man Cybern. Syst. (2020)

    Google Scholar 

  5. Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., Zheng, Z.: Phishing scams detection in ethereum transaction network. ACM Trans. Internet Technol. (TOIT) 21(1), 1–16 (2020)

    Article  Google Scholar 

  6. Wang, J., Chen, P., Yu, S., Xuan, Q.: TSGN: transaction subgraph networks for identifying ethereum phishing accounts. In: Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X. (eds.) BlockSys 2021. CCIS, vol. 1490, pp. 187–200. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7993-3_15

    Chapter  Google Scholar 

  7. Shen, J., Zhou, J., Xie, Y., Yu, S., Xuan, Q.: Identity inference on blockchain using graph neural network. In: Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X. (eds.) BlockSys 2021. CCIS, vol. 1490, pp. 3–17. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7993-3_1

    Chapter  Google Scholar 

  8. Zhou, J., Hu, C., Chi, J., Wu, J., Shen, M., Xuan, Q.: Behavior-aware account de-anonymization on ethereum interaction graph. arXiv preprint arXiv:2203.09360 (2022)

  9. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6(1), 3–28 (2018)

    Article  Google Scholar 

  10. Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-GCN: multi-scale graph convolution for semi-supervised node classification. In: Uncertainty in Artificial Intelligence, pp. 841–851. PMLR (2020)

    Google Scholar 

  11. Xuan, Q., et al.: Subgraph networks with application to structural feature space expansion. IEEE Trans. Knowl. Data Eng. 33(6), 2776–2789 (2019)

    Article  Google Scholar 

  12. Chen, J., Zhang, J., Chen, Z., Du, M., Xuan, Q.: Time-aware gradient attack on dynamic network link prediction. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  13. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  14. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  15. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 37–48 (2013)

    Google Scholar 

  16. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information And Knowledge Management, pp. 891–900 (2015)

    Google Scholar 

  17. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114 (2016)

    Google Scholar 

  18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  20. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  21. Lin, D., Wu, J., Yuan, Q., Zheng, Z.: T-EDGE: temporal weighted multidigraph embedding for ethereum transaction network analysis. Front. Phys. 8, 204 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Key R &D Program of China under Grant 2020YFB1006104, by the Key R &D Programs of Zhejiang under Grant 2022C01018, by the National Natural Science Foundation of China under Grant 61973273, and by the Zhejiang Provincial Natural Science Foundation of China under Grant LR19F030001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, P., Xie, Y., Xu, X., Zhou, J., Xuan, Q. (2022). Phishing Fraud Detection on Ethereum Using Graph Neural Network. In: Svetinovic, D., Zhang, Y., Luo, X., Huang, X., Chen, X. (eds) Blockchain and Trustworthy Systems. BlockSys 2022. Communications in Computer and Information Science, vol 1679. Springer, Singapore. https://doi.org/10.1007/978-981-19-8043-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8043-5_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8042-8

  • Online ISBN: 978-981-19-8043-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics