Abstract
Blockchain has widespread applications in the financial field but has also attracted increasing cybercrimes. Recently, phishing fraud has emerged as a major threat to blockchain security, calling for the development of effective regulatory strategies. Nowadays network science has been widely used in modeling Ethereum transaction data, further introducing the network representation learning technology to analyze the transaction patterns. In this paper, we consider phishing detection as a graph classification task and propose an end-to-end Phishing Detection Graph Neural Network framework (PDGNN). Specifically, we first construct a lightweight Ethereum transaction network and extract transaction subgraphs of collected phishing accounts. Then we propose an end-to-end detection model based on Chebyshev-GCN to precisely distinguish between normal and phishing accounts. Extensive experiments on five Ethereum datasets demonstrate that our PDGNN significantly outperforms general phishing detection methods and scales well in large transaction networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Holub, A., O’Connor, J.: Coinhoarder: tracking a Ukrainian bitcoin phishing ring DNS style. In: 2018 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–5. IEEE (2018)
Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues of bitcoin. IEEE Commun. Surv. Tutor. 20(4), 3416–3452 (2018)
Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on ethereum: identification, analysis, and impact. Future Gener. Comput. Syst. 102, 259–277 (2020)
Wu, J., et al.: Who are the phishers? Phishing scam detection on ethereum via network embedding. IEEE Trans. Syst. Man Cybern. Syst. (2020)
Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., Zheng, Z.: Phishing scams detection in ethereum transaction network. ACM Trans. Internet Technol. (TOIT) 21(1), 1–16 (2020)
Wang, J., Chen, P., Yu, S., Xuan, Q.: TSGN: transaction subgraph networks for identifying ethereum phishing accounts. In: Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X. (eds.) BlockSys 2021. CCIS, vol. 1490, pp. 187–200. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7993-3_15
Shen, J., Zhou, J., Xie, Y., Yu, S., Xuan, Q.: Identity inference on blockchain using graph neural network. In: Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X. (eds.) BlockSys 2021. CCIS, vol. 1490, pp. 3–17. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7993-3_1
Zhou, J., Hu, C., Chi, J., Wu, J., Shen, M., Xuan, Q.: Behavior-aware account de-anonymization on ethereum interaction graph. arXiv preprint arXiv:2203.09360 (2022)
Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6(1), 3–28 (2018)
Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-GCN: multi-scale graph convolution for semi-supervised node classification. In: Uncertainty in Artificial Intelligence, pp. 841–851. PMLR (2020)
Xuan, Q., et al.: Subgraph networks with application to structural feature space expansion. IEEE Trans. Knowl. Data Eng. 33(6), 2776–2789 (2019)
Chen, J., Zhang, J., Chen, Z., Du, M., Xuan, Q.: Time-aware gradient attack on dynamic network link prediction. IEEE Trans. Knowl. Data Eng. (2021)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 37–48 (2013)
Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information And Knowledge Management, pp. 891–900 (2015)
Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114 (2016)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)
Lin, D., Wu, J., Yuan, Q., Zheng, Z.: T-EDGE: temporal weighted multidigraph embedding for ethereum transaction network analysis. Front. Phys. 8, 204 (2020)
Acknowledgments
This work was partially supported by the National Key R &D Program of China under Grant 2020YFB1006104, by the Key R &D Programs of Zhejiang under Grant 2022C01018, by the National Natural Science Foundation of China under Grant 61973273, and by the Zhejiang Provincial Natural Science Foundation of China under Grant LR19F030001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Li, P., Xie, Y., Xu, X., Zhou, J., Xuan, Q. (2022). Phishing Fraud Detection on Ethereum Using Graph Neural Network. In: Svetinovic, D., Zhang, Y., Luo, X., Huang, X., Chen, X. (eds) Blockchain and Trustworthy Systems. BlockSys 2022. Communications in Computer and Information Science, vol 1679. Springer, Singapore. https://doi.org/10.1007/978-981-19-8043-5_26
Download citation
DOI: https://doi.org/10.1007/978-981-19-8043-5_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8042-8
Online ISBN: 978-981-19-8043-5
eBook Packages: Computer ScienceComputer Science (R0)