Skip to main content

Electric Power Management and Control in DC Buildings—State-Of-The-Art and Emerging Technologies

  • Chapter
  • First Online:
Power Quality: Infrastructures and Control

Part of the book series: Studies in Infrastructure and Control ((sic))

  • 285 Accesses

Abstract

The problem of global climate change has intensified the efforts for minimizing the use of fossil fuels to reduce the associated carbon footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEA (2021) Renewable energy market update 2021. IEA, Paris. [Online] https://www.iea.org/reports/renewable-energy-market-update-2021

  2. Energy efficiency trends and policies in the household and tertiary sectors—an analysis based on the ODYSSEE and MURE databases. [Online] https://www.odyssee-mure.eu/publications/archives/energy-efficiency-trends-policies-buildings.pdf

  3. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency, PE/4/2018/REV/1. [Online] https://eur-lex.europa.eu/

  4. Ala-Juusela M, ur Rehman H, Hukkalainen M, Reda F (2021) Positive energy building definition with the framework, elements and challenges of the concept. Energies 14(19):6260. https://doi.org/10.3390/en14196260.

  5. Magrini A, Lentini G, Cuman S, Bodrato A, Marenco L (2020) From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): the next challenge—the most recent European trends with some notes on the energy analysis of a forerunner PEB example. Develop Built Environ 3: 100019. https://doi.org/10.1016/j.dibe.2020.100019

  6. Kumar GMS, Cao S (2021) State-of-the-art review of positive energy building and community systems. Energies 14(16):5046. https://doi.org/10.3390/en14165046

  7. Cole RJ, Fedoruk L (2015) Shifting from net-zero to net-positive energy buildings. Build Res Inform 43(1):111–120

    Article  Google Scholar 

  8. Santos AFB, Duggan GP, Lute CD, Zimmerle DJ (2018) An efficiency comparison study for small appliances operating in DC and AC in minigrids. IEEE Glob Human Technol Conf (GHTC) 2018:1–2. https://doi.org/10.1109/GHTC.2018.8601861

    Article  Google Scholar 

  9. Pantano S, May-Ostendorp P, Dayem K (2016) Demand DC. Accelerating the introduction of DC power in the home. CLASP

    Google Scholar 

  10. Strategen Consulting and ARUP Group (2014) Direct-current scoping study: opportunities for direct current power in the built environment. US Department of Energy, Building Technologies Office, Technical Report

    Google Scholar 

  11. Patterson BT (2012) DC, come home: DC microgrids and the birth of the ‘Enernet.’ IEEE Power Energy Mag 10(6):60–69

    Article  Google Scholar 

  12. Vossos V, Gerber D, Bennani Y, Brown R, Marnay C (2018) Technoeconomic analysis of DC power distribution in commercial buildings. Appl Energy 230:663–678. [Online]. http://www.sciencedirect.com/science/article/pii/S0306261918312339

  13. Directive 2014/35/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits. [Online]. http://data.europa.eu/eli/dir/2014/35/oj

  14. NL: DC Installations for Low Voltage, Standard NPR 9090:2018 (2018) Royal Dutch Standardization Institute (NEN). pp 1–50

    Google Scholar 

  15. Rivera S, Lizana RF, Kouro S, Dragicevic T, Wu B (2021) Bipolar DC power conversion: state-of-the-art and emerging technologies. IEEE J Emerg Select Top Power Electron 9(2):1192–1204

    Google Scholar 

  16. Bryan J, Duke R, Round S Decentralized generator scheduling in a nanogrid using DC bus signaling. pp 1–6

    Google Scholar 

  17. Hamatwi E, Davidson IE, Agee J, Venayagamoorthy G (2016) Model of a hybrid distributed generation system for a DC nano-grid. In: 2016 Clemson University power systems conference (PSC). pp 1–8

    Google Scholar 

  18. Gonzalez-Longatt F, Rajpurohit BS, Singh SN (2015) Smart multi-terminal DC μ-grids for autonomous zero-net energy buildings: implicit concepts. In: 2015 IEEE innovative smart grid technologies–Asia (ISGT ASIA). pp 1–6

    Google Scholar 

  19. Schönberger J, Duke R, Round SD (2006) DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid. IEEE Trans Ind Electron 53(5):1453–1460

    Article  Google Scholar 

  20. Wu D, Tang F, Dragicevic T, Guerrero JM, Vasquez JC (2015) Coordinated control based on bus-signaling and virtual inertia for islanded DC microgrids. IEEE Trans Smart Grid 6(6):2627–2638. https://doi.org/10.1109/TSG.2014.2387357

    Article  Google Scholar 

  21. Vandoorn TL, Vasquez JC, De Kooning J, Guerrero JM, Vandevelde L (2013) Microgrids: hierarchical control and an overview of the control and reserve management strategies. IEEE Ind Electron Mag 7(4):42–55

    Article  Google Scholar 

  22. Guerrero JM, Chandorkar M, Lee T-L, Loh PC (2013) Advanced control architectures for intelligent microgrids-part I: decentralized and hierarchical control. IEEE Trans Ind Electron 60(4):1254–1262

    Article  Google Scholar 

  23. Meng L, Shafiee Q, Trecate GF, Karimi H, Fulwani D, Lu X, Guerrero JM (2017) Review on control of DC microgrids. IEEE J Emerg Select Top Power Electron 1–1

    Google Scholar 

  24. Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3(4):1963–1976

    Article  Google Scholar 

  25. Shahid MU, Khan MM, Hashmi K, Boudina R, Khan A, Yuning J, Tang H (2019) Renewable Energy Source (RES) Based Islanded DC Microgrid with Enhanced Resilient Control. Int J Electr Power Energy Syst 113:461–71

    Google Scholar 

  26. Boroyevich D, Cvetkovic I, Dong D, Burgos R, Wang F, Lee F (2010) Future electronic power distribution systems a contemplative view. In: 2010 12th International conference on optimization of electrical and electronic equipment. pp 1369–1380

    Google Scholar 

  27. Nguyen TL, Guerrero JM, Griepentrog G (2020) A self-sustained and flexible control strategy for Islanded DC nanogrids without communication links. IEEE J Emerg Select Top Power Electron 8(1): 877–892. https://doi.org/10.1109/JESTPE.2019.2894564

  28. Liu G, Khodamoradi A, Mattavelli P, Caldognetto T, Magnone P (2018) Plug and play DC-DC converters for smart DC nanogrids with advanced control ancillary services. In: 2018 IEEE 23rd international workshop on computer aided modeling and design of communication links and networks (CAMAD). pp 1–6

    Google Scholar 

  29. Ito Y, Zhongqing Y, Akagi H (2004) DC micro-grid based distribution power generation system. In: Power electronics and motion control conference. pp 2352–2360

    Google Scholar 

  30. Zhang W, Lee FC, Huang P-Y (2014) Energy management system control and experiment for future home. In: 2014 IEEE energy conversion congress and exposition (ECCE). IEEE, Pittsburgh, PA, USA, pp 3317–3324

    Google Scholar 

  31. Wunder B, Ott L, Kaiser J, Gosses K, Schulz M, Fersterra F, Marz M, Lavery M, Han Y (2017) Droop controlled cognitive power electronics for DC microgrids. In: 2017 IEEE international telecommunications energy conference (INTELEC). IEEE, Broadbeach, QLD, Australia, pp 335–342. https://doi.org/10.1109/INTLEC.2017.8214158

  32. Katiraei F, Iravani MRR, Lehn PWW (2005) Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans Power Deliv 20(1):248–257

    Article  Google Scholar 

  33. Kumar D, Zare F, Ghosh A (2017) DC microgrid technology: system architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 5:12230–12256. https://doi.org/10.1109/ACCESS.2017.2705914

    Article  Google Scholar 

  34. Gungor VC, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, Hancke GP (2011) Smart grid technologies: communication technologies and standards. IEEE Trans Industr Inf 7(4):529–539. https://doi.org/10.1109/TII.2011.2166794

    Article  Google Scholar 

  35. Dragičević T, Guerrero JM, Vasquez JC (2014) A distributed control strategy for coordination of an autonomous LVDC microgrid based on power-line signaling. In: IEEE Trans Industr Electron (61)7:3313–3326. https://doi.org/10.1109/TIE.2013.2282597

  36. Kim S, Jeon J, Cho C, Ahn J, Kwon S (2008) Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer. IEEE Trans Industr Electron 55(4):1677–1688. https://doi.org/10.1109/TIE.2007.907662

    Article  Google Scholar 

  37. Werth A, Kitamura N, Tanaka K (2015) Conceptual study for open energy systems: distributed energy network using interconnected DC nanogrids. IEEE Trans Smart Grid 6(4):1621–1630. https://doi.org/10.1109/TSG.2015.2408603

    Article  Google Scholar 

  38. Pradhan R, Chirayath M, Thale S (2016) Coordinated control strategy for a DC microgrid with low bandwidth communication. In: 2016 IEEE international conference on power electronics, drives and energy systems (PEDES). pp 1–6. https://doi.org/10.1109/PEDES.2016.7914276

  39. Liu S, Wang X, Liu PX (2015) Impact of communication delays on secondary frequency control in an islanded microgrid. IEEE Trans Industr Electron 62(4):2021–2031. https://doi.org/10.1109/TIE.2014.2367456

    Article  Google Scholar 

  40. Ahmed MA, Kim Y (2013) Communication Networks of Domestic Small-Scale Renewable Energy Systems. In: 2013 4th International conference on intelligent systems, modelling and simulation. pp 513–518. https://doi.org/10.1109/ISMS.2013.21

  41. Klaina H et al (2020) Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities. IEEE Access 8:124688–124701. https://doi.org/10.1109/ACCESS.2020.3007597

    Article  Google Scholar 

  42. Mandic-Lukic J, Milinkovic B, Simic N (2016) Communication solutions for smart grids, smart cities and smart buildings. In: Mediterranean conference on power generation, transmission, distribution and energy conversion (MedPower 2016). pp 1–7. https://doi.org/10.1049/cp.2016.1109

  43. Kaushal A, Hertem DV (2019) An overview of ancillary services and HVDC systems in European context. Energies 12(18):3481

    Article  Google Scholar 

  44. Demoulias CS, Malamaki K-ND, Gkavanoudis S, Mauricio JM, Kryonidis GC, Oureilidis KO, Kontis EO, Martinez Ramos JL (2020) Ancillary services offered by distributed renewable energy sources at the distribution grid level: an attempt at proper definition and quantification. Appl Sci 10(20):7106

    Google Scholar 

  45. Thiesen H, Jauch C, Gloe A (2016) Design of a system substituting today’s inherent inertia in the European continental synchronous area. Energies 9(8):582

    Article  Google Scholar 

  46. ENTSO-E; Wind Europe; Solar Power Europe and T&D Europe (2020) High penetration of power electronic interfaced power sources and the potential contribution of grid forming converters. Technical Report. 2020. https://eepublicdownloads.blob.core.windows.net/public-cdn-container/cleandocuments/Publications/SOC/High_Penetration_of_Power_Electronic_Interfaced_Power_Sources_and_the_Potential_Contribution_of_Grid_Forming_Converters.pdf. Accessed 22 July 2021

  47. Holmberg D, Omar F (2021) “Characterization of residential distributed energy resource potential to provide ancillary services”, NIST SP 1900–601, 2018. . https://doi.org/10.6028/NIST.SP.1900-601

  48. Zhong Q (2016) Virtual synchronous machines: a unified interface for grid integration. IEEE Power Electr Magaz 3(4):18–27

    Article  Google Scholar 

  49. Eriksson R, Modig N, Elkington K (2018) Synthetic inertia versus fast frequency response: a definition. IET Renew Power Gener 12:507–514

    Article  Google Scholar 

  50. Commission Regulation (EU) 2016/631 of 14 April 2016, establishing a network code on requirements for grid connection of generators. 2016. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0631&from=EN. Accessed 16 June 2021

  51. EN50549–2 (2019) Requirements for generating plants to be connected in parallel with distribution networks—Part 2: connection to a MV distribution network—generating plants up to and including Type B. European Committee for Electrotechnical Standardization (CENELEC), Brussels, Belgium

    Google Scholar 

  52. Goebel C, Hesse H, Schimpe M, Jossen A, Jacobsen H (2017) Model-based dispatch strategies for lithium-ion battery energy storage applied to pay-as-bid markets for secondary reserve. IEEE Trans Power Syst 32(4):2724–2734

    Article  Google Scholar 

  53. Calderaro V, Galdi V, Lamberti F, Piccolo A (2015) A smart strategy for voltage control ancillary service in distribution networks. IEEE Trans Power Syst 30(1):494–502

    Article  Google Scholar 

  54. Kryonidis GC, Demoulias CS, Papagiannis GK (2020) A two-stage solution to the bi-objective optimal voltage regulation problem. IEEE Trans Sustain Energy 11(2):928–937

    Article  Google Scholar 

  55. De Oro Arenas L, e Melo GA, Canesin CA (2017) FPGA-based power meter implementation for three-phase three-wire and four-wire power systems, according to IEEE 1459–2010 standard. In: 2017 Brazilian Power Electronics Conference (COBEP). pp 1–6

    Google Scholar 

  56. Telukunta V, Pradhan J, Agrawal A, Singh M, Srivani SG (2017) Protection challenges under bulk penetration of renewable energy resources in power systems: a review. CSEE J Power Energy Syst 3(4):365–379

    Article  Google Scholar 

  57. Brundlinger R, Strasser T, Lauss G et al (2015) Lab tests: verifying that smart grid power converters are truly smart. IEEE Power Energy Mag 13(2):30–42

    Article  Google Scholar 

  58. Liang X, Andalib-Bin-Karim C (2018) harmonics and mitigation techniques through advanced control in grid-connected renewable energy sources: a review. IEEE Trans Indus Appl 54(4):3100–3111

    Google Scholar 

  59. Kumar GVB, Palanisamy K (2020) A review of energy storage participation for ancillary services in a microgrid environment. Inventions 5(4):63

    Article  Google Scholar 

  60. Liu Y et al (2020) Aging effect analysis of PV inverter semiconductors for ancillary services support. IEEE Open J Indus Appl 1:157–170

    Article  Google Scholar 

  61. Oureilidis K, Malamaki K-N, Gallos K, Tsitsimelis A, Dikaiakos C, Gkavanoudis S, Cvetkovic M, Mauricio JM, Maza Ortega JM, Ramos JLM, Papaioannou G, Demoulias C (2020) Ancillary services market design in distribution networks: review and identification of barriers. Energies 13(4):917

    Google Scholar 

  62. Liu K, Chen Q, Kang C, Su W, Zhong G (2018) Optimal operation strategy for distributed battery aggregator providing energy and ancillary services. J Modern Power Syst Clean Energy 6(4):722–732

    Article  Google Scholar 

  63. Dolatabadi M, Siano P (2020) A scalable privacy preserving distributed parallel optimization for a large-scale aggregation of prosumers with residential PV-battery systems. IEEE Access 8:210950–210960

    Article  Google Scholar 

  64. Stiefenhofer T (2019) Remote battery management system, management device, and remote battery management method. US Patent US 10,516,547 B2, Sonnen GmbH, 2019

    Google Scholar 

  65. Rivera S, Kouro S, Vazquez S, Goetz SM, Lizana R, Romero-Cadaval E (2021) Electric vehicle charging infrastructure: from grid to battery. IEEE Ind Electron Mag 15(2):37–51

    Article  Google Scholar 

  66. Wei C, Shao J, Agrawal B, Zhu D, Xie H (2019) New surface mount SiC MOSFETs enable high efficiency high power density bi-directional on-board charger with flexible DC-link voltage. IEEE Appl Power Electron Conf Exposit (APEC) 2019:1904–1909

    Google Scholar 

  67. Wei C, Zhu D, Xie H, Shao J (2019) A 6.6kW high power density bi-directional EV on-board charger based on SiC MOSFETs. In: PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. pp. 246–252

    Google Scholar 

  68. Baranwal R, Iyer KV, Basu K, Castelino GF, Mohan N (2018) A reduced switch count single-stage three-phase bidirectional rectifier with high-frequency isolation. IEEE Trans Power Electron 33(11):9520–9541

    Article  Google Scholar 

  69. Wu F, Li X, Yang G, Liu H, Meng T (2020) Variable switching periods based space vector phase-shifted modulation for dab based three-phase single-stage isolated AC–DC converter. IEEE Trans Power Electron 35(12):13725–13734

    Article  Google Scholar 

  70. Das D, Weise N, Basu K, Baranwal R, Mohan N (2019) A bidirectional soft-switched DAB-based single-stage three-phase AC–DC converter for V2G application. IEEE Trans Transp Electrificat 5(1):186–199

    Article  Google Scholar 

  71. Rabkowski J, Blinov A, Zinchenko D, Wrona G, Zdanowski M (2020) Grid-frequency Vienna rectifier and isolated current-source DC-DC converters for efficient off-board charging of electric vehicles. In: 2020 22nd European conference on power electronics and applications (EPE'20 ECCE Europe). pp 1–10

    Google Scholar 

  72. Teichmann R, Bernet S (2005) A comparison of three-level converters versus two-level converters for low-voltage drives, traction, and utility applications. IEEE Trans Indus Appl 41(3):855–865

    Google Scholar 

  73. Schweizer M, Friedli T, Kolar JW (2013) Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems. IEEE Trans Industr Electron 60(12):5515–5527

    Article  Google Scholar 

  74. Bruckner T, Bemet S (2001) Loss balancing in three-level voltage source inverters applying active NPC switches. In: 2001 IEEE 32nd annual power electronics specialists conference (IEEE Cat. No.01CH37230). vol. 2, pp. 1135–1140

    Google Scholar 

  75. Kim Y-J, Kim S-M, Lee K-B (2021) Improving DC-link capacitor lifetime for three-level photovoltaic hybrid active NPC inverters in full modulation index range. IEEE Trans Power Electron 36(5):5250–5261

    Article  Google Scholar 

  76. Davoodnezhad R, Holmes DG, McGrath BP (2014) A novel three-level hysteresis current regulation strategy for three-phase three-level inverters. IEEE Trans Power Electron 29(11):6100–6109

    Article  Google Scholar 

  77. Wang Q, Zhang X, Burgos R, Boroyevich D, White AM, Kheraluwala M (2018) Design and implementation of a two-channel interleaved vienna-type rectifier with >99% efficiency. IEEE Trans Power Electron 33(1):226–239

    Article  Google Scholar 

  78. Stempfle M, Fischer M, Nitzsche M, Wölfle J, Roth-Stielow J (2016) Efficiency analysis of three-level NPC and T-Type voltage source inverter for various operation modes optimizing the overall drive train efficiency by an operating mode selection. In: 2016 18th European conference on power electronics and applications (EPE'16 ECCE Europe). pp 1–10

    Google Scholar 

  79. Anthon A, Zhang Z, Andersen MAE, Holmes DG, McGrath B, Teixeira CA (2017) Comparative Evaluation of the Loss and Thermal Performance of Advanced Three-Level Inverter Topologies. IEEE Trans Indus Appl 53(2):1381–1389

    Google Scholar 

  80. Akagi H, Kinouchi S, Miyazaki Y (2016) Bidirectional isolated dual-active-bridge (DAB) DC-DC converters using 1.2-kV 400-A SiC-MOSFET dual modules. CPSS Trans Power Electron Appl 1(1):33–40

    Article  Google Scholar 

  81. Bai H, Mi C (2008) Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC converters using novel dual-phase-shift control. IEEE Trans Power Electron 23(6):2905–2914

    Article  Google Scholar 

  82. Huang J, Wang Y, Li Z, Lei W (2016) Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional DC–DC converter. IEEE Trans Industr Electron 63(7):4169–4179

    Article  Google Scholar 

  83. Hiltunen J, Väisänen V, Juntunen R, Silventoinen P (2015) Variable-frequency phase shift modulation of a dual active bridge converter. IEEE Trans Power Electron 30(12):7138–7148

    Article  Google Scholar 

  84. Mou D et al (2021) Optimal asymmetric duty modulation to minimize inductor peak-to-peak current for dual active bridge DC–DC converter. IEEE Trans Power Electron 36(4):4572–4584

    Article  Google Scholar 

  85. Kasper M, Bortis D, Deboy G, Kolar JW (2017) Design of a highly efficient (97.7%) and very compact (2.2 kW/dm $^3$) isolated AC–DC telecom power supply module based on the multicell ISOP converter approach. IEEE Trans Power Electron 32(10):7750–7769

    Article  Google Scholar 

  86. Huang P-Y, Ohta T, Fujii M, Kado Y (2019). Bidirectional isolated ripple cancel dual active bridge DC-DC converter. In: 2019 IEEE Third International Conference on DC Microgrids (ICDCM). pp 1–6

    Google Scholar 

  87. Chen W, Rong P, Lu Z (2010) Snubberless bidirectional DC–DC converter with new CLLC resonant tank featuring minimized switching loss. IEEE Trans Industr Electron 57(9):3075–3086

    Article  Google Scholar 

  88. Siebke K, Mallwitz R (2020) Comparison of a dual active bridge and CLLC converter for on-board vehicle chargers using GaN and time domain modeling method. In: 2020 IEEE Energy Conversion Congress and Exposition (ECCE) 2020. pp 1210–1216

    Google Scholar 

  89. Mukherjee S, Kumar A, Chakraborty S (2021) Comparison of DAB and LLC DC–DC converters in high-step-down fixed-conversion-ratio (DCX) applications. IEEE Trans Power Electron 36(4):4383–4398

    Article  Google Scholar 

  90. Escudero M, Meneses D, Rodriguez N, Morales DP (2020) Modulation scheme for the bidirectional operation of the phase-shift full-bridge power converter. IEEE Trans Power Electron 35(2):1377–1391

    Article  Google Scholar 

  91. Zhu L (2006) A novel soft-commutating isolated boost full-bridge ZVS-PWM DC–DC converter for bidirectional high power applications. IEEE Trans Power Electron 21(2):422–429

    Article  Google Scholar 

  92. Wu T, Yang J, Kuo C, Wu Y (2014) Soft-switching bidirectional isolated full-bridge converter with active and passive snubbers. IEEE Trans Industr Electron 61(3):1368–1376

    Article  Google Scholar 

  93. Miura Y, Kaga M, Horita Y, Ise T (2010) Bidirectional isolated dual full-bridge dc-dc converter with active clamp for EDLC. In: 2010 IEEE energy conversion congress and exposition. pp 1136–1143

    Google Scholar 

  94. Xuewei P, Rathore AK (2013) Novel interleaved bidirectional snubberless soft-switching current-fed full-bridge voltage doubler for fuel-cell vehicles. IEEE Trans Power Electron 28(12):5535–5546

    Article  Google Scholar 

  95. Blinov A, Kosenko R, Vinnikov D, Parsa L (2020) Bidirectional isolated current-source DAB converter with extended ZVS/ZCS range and reduced energy circulation for storage applications. IEEE Trans Industr Electron 67(12):10552–10563

    Article  Google Scholar 

  96. Chen W, Zane R, Seltzer D, Corradini L (2014) Isolated bidirectional DC/AC and AC/DC three-phase power conversion using series resonant converter modules and a three-phase unfolder. In: 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL)

    Google Scholar 

  97. Chen WW, Riar B, Zane R (2017) A three-port series resonant converter for three-phase unfolding inverters. In: 2017 IEEE 18th workshop on control and modeling for power electronics (COMPEL). pp 1–7

    Google Scholar 

  98. Chen W, Riar B, Zane R (2018) Battery integrated modular multifunction converter for grid energy storage. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE). 2157–2163

    Google Scholar 

  99. Yelaverthi DB, Hatch R, Mansour M, Wang H, Zane R (2019) 3-Level asymmetric full-bridge soft-switched PWM converter for 3-phase unfolding based battery charger topology. In: 2019 IEEE energy conversion congress and exposition (ECCE). 2737–2743

    Google Scholar 

  100. Antivachis M, Anderson JA, Bortis D, Kolar JW (2020) Analysis of a synergetically controlled two-stage three-phase DC/AC buck-boost converter. CPSS Trans Power Electron Appl 5(1):34–53

    Article  Google Scholar 

  101. Korkh O, Blinov A, Vinnikov D, Chub A (2020) Review of isolated matrix inverters: topologies, modulation methods and applications. Energies 13(9):2394

    Article  Google Scholar 

  102. Blinov A, Verbytskyi I, Peftitsis D, Vinnikov D (2021) Regenerative passive snubber circuit for high-frequency link converters. IEEE J Emerg Select Top Indus Electron. https://doi.org/10.1109/JESTIE.2021.3066897.

  103. Martins JF, Romero-Cadaval E, Vinnikov D, Malinowski M (2022) Transactive Energy: Power Electronics Challenges. IEEE Power Electronics Magazine 9(1):20–32. https://doi.org/10.1109/MPEL.2022.3140981

  104. Carvalho EL, Blinov A, Chub A, Emiliani P, de Carne G, Vinnikov D (2022) Grid Integration of DC Buildings: Standards Requirements and Power Converter Topologies. IEEE Open J Power Electron 3:798–823. https://doi.org/10.1109/OJPEL.2022.3217741

Download references

Acknowledgements

This work was supported in part by the Estonian Research Council under Grant PRG1086, in part by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 955614 and in part by the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts under Grant 2014-2020.4.01.15-0016, funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Blinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blinov, A., Roasto, I., Chub, A., Emiliani, P., Vinnikov, D. (2023). Electric Power Management and Control in DC Buildings—State-Of-The-Art and Emerging Technologies. In: Giri, A.K., Arya, S.R., Guerrero, J.M., Kumar, S. (eds) Power Quality: Infrastructures and Control. Studies in Infrastructure and Control. Springer, Singapore. https://doi.org/10.1007/978-981-19-7956-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7956-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7955-2

  • Online ISBN: 978-981-19-7956-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics