Skip to main content

Self-attention-Based Efficient U-Net for Crack Segmentation

  • Conference paper
  • First Online:
Computer Vision and Robotics

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 439 Accesses

Abstract

Crack detection, classification, and characterization are key components of automatic structural health monitoring systems. Convolution-based encoder-decoder deep learning architecture has played a significant role in developing crack segmentation models possessing limitations in capturing the global context of the image. To overcome the stated limitation, in the present study, we propose a novel Self-Attention-based Efficient U-Net which effectively tries to solve this limitation. The proposed method achieved an F1 Score of 0.775, an IoU of 0.663, and an accuracy of 97.3% on the Crack500 dataset improving upon the current state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohan A, Poobal S (2018) Crack detection using image processing: a critical review and analysis. Alexandria Eng J 57(2):787–798 (2018). ISSN: 1110-0168

    Google Scholar 

  2. Velumani P et al (2020) Analysis of cracks in structures and buildings recent citations analysis of cracks in structures and buildings. J Phys 12:116. https://doi.org/10.1088/1742-6596/1706/1/012116

  3. Kumar A et al (2020) Crack detection of structures using deep learning frame-work. In: Proceedings of the 3rd international conference on intelligent sustainable systems, ICISS 2020, pp 526–533. https://doi.org/10.1109/ICISS49785.2020.9315949

  4. Papadrakakis M et al (2016) Optimization of large-scale 3-d trusses using evolution strategies and neural networks. 14:211–223. https://doi.org/10.1260/0266351991494830. ISSN: 02663511

  5. Gupta S et al (2020) Instacovnet-19: a deep learning classification model for the detection of covid-19 patients using chest X-ray. Appl Soft Comput 106–859. https://doi.org/10.1016/j.asoc.2020.106859. ISSN: 15684946

  6. Goodell JW et al (2021) Artificial intelligence and machine learning in finance: identifying foundations, themes, and research clusters from bibliometric analysis. J Behav Exp Finance 32:100–577. https://doi.org/10.1016/j.jbef.2021.100577. ISSN: 2214-6350

  7. Tan M, Le Q (2019) EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th international conference on machine learning. Proceedings of machine learning research, vol 97, PMLR, pp 6105–6114

    Google Scholar 

  8. Cordonnier J-B et al (2019) On the relationship between self-attention and convolutional layers

    Google Scholar 

  9. Ronneberger O et al (2015) U-net: convolutional networks for biomedical image segmentation. In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9351, pp 234–241. ISSN: 16113349

    Google Scholar 

  10. Iyer S, Sinha SK (2005) A robust approach for automatic detection and segmentation of cracks in underground pipeline images. Image Vis Comput 23:921–933. https://doi.org/10.1016/j.imavis.2005.05.017. ISSN: 02628856

  11. Oliveira H, Correia P (2009) Automatic road crack segmentation using entropy and image dynamic thresholding. IEEE. ISBN: 978-161-7388-76-7

    Google Scholar 

  12. Fujita Y, Hamamoto Y (2011) A robust automatic crack detection method from noisy concrete surfaces. Mach Vis Appl 22:245–254. https://doi.org/10.1007/s00138-009-0244-5. ISSN: 09328092

  13. Badrinarayanan V et al (2015) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615. ISSN: 01628828

  14. Zhang K, Cheng H (2017) A novel pavement crack detection approach using pre-selection based on transfer learning. In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics). LNCS, vol 10666, pp 273–283. https://doi.org/10.1007/978-3-319-71607-7_24. ISSN: 16113349

  15. Wang X, Hu Z (2017) Grid-based pavement crack analysis using deep learning. In: 2017 4th International conference on transportation information and safety (ICTIS), pp 917–924. https://doi.org/10.1109/ICTIS.2017.8047878

  16. Gopalakrishnan K et al (2017) Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr Build Mater 157:322–330. https://doi.org/10.1016/J.CONBUILDMAT.2017.09.110. ISSN: 0950-0618

  17. Park S et al (2019) Patch-based crack detection in black box images using convolutional neural networks. J Comput Civ Eng 33:04 019 017. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000831. ISSN: 0887-3801

  18. Yang X et al (2018) Automatic pixel-level crack detection and measurement using fully convolutional network. Comput-Aided Civ Infrastruct Eng 33:1090–1109. https://doi.org/10.1111/MICE.12412. ISSN: 1467-8667

  19. Zou Q et al (2019) Deepcrack: learning hierarchical convolutional features for crack detection. IEEE Trans Image Process 28(3):1498–1512

    Article  MathSciNet  Google Scholar 

  20. Bang S et al (2019) Encoder-decoder network for pixel-level road crack detection in black-box images. Comput-Aided Civ Infrast Eng 34:713–727. https://doi.org/10.1111/MICE.12440. ISSN: 1467-8667

  21. Dung CV, Anh LD (2019) Autonomous concrete crack detection using deep fully convolutional neural network. Autom Constr 99:52–58. https://doi.org/10.1016/J.AUTCON.2018.11.028. ISSN: 0926-5805

  22. Zhang A et al (2017) Automated pixel-level pavement crack detection on 3d asphalt surfaces using a deep-learning network. Comput-Aided Civ Infrastruct Eng 32:805–819. https://doi.org/10.1111/MICE.12297. ISSN: 1467-8667

  23. Zhang A et al (2018) Deep learning-based fully automated pavement crack detection on 3d asphalt surfaces with an improved cracknet. J Comput Civ Eng 32:04 018 041. ISSN: 0887-3801

    Google Scholar 

  24. Fei Y et al (2020) Pixel-level cracking detection on 3d asphalt pavement images through deep-learning-based cracknet-v. IEEE Trans Intell Transp Syst 21(1):273–284

    Article  Google Scholar 

  25. Sandler M et al (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), June 2018

    Google Scholar 

  26. Yang F et al (2020) Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans Intell Transp Syst 21(4):1525–1535

    Article  Google Scholar 

  27. Zhou S, Song W (2021) Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Autom Constr 125. ISSN: 09265805

    Google Scholar 

  28. Paszke A et al (2019) Pytorch: an imperative style, high-performance deep learning library

    Google Scholar 

  29. Xie S, Tu Z (2015) Holistically-nested edge detection. Int J Comput Vis 125:3–18. ISSN: 15731405

    Google Scholar 

  30. Liu Y et al (2019) Richer convolutional features for edge detection. IEEE Trans Pattern Anal Mach Intell 41:1939–1946. ISSN: 19393539

    Google Scholar 

  31. Nguyen NTH et al (2018) Pavement crack detection using convolutional neural network. In: ACM International conference proceeding series, pp 251–256

    Google Scholar 

  32. Fan Z et al (2018) Automatic pavement crack detection based on structured prediction with the convolutional neural network. ISSN: 2331-8422

    Google Scholar 

  33. Zhang H et al (2020) Resnest: split-attention networks

    Google Scholar 

  34. Lau SL et al (2020) Automated pavement crack segmentation using U-Net-based convolutional neural network. IEEE Access 8:114 892–114 899. ISSN: 21693536

    Google Scholar 

  35. Abdellatif M et al (2021) Combining block-based and pixel-based approaches to improve crack detection and localization. Autom Constr 122:103–492. ISSN: 0926-5805

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyansh Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, S., Shrivastwa, S., Kumar, S., Trivedi, A. (2023). Self-attention-Based Efficient U-Net for Crack Segmentation. In: Shukla, P.K., Singh, K.P., Tripathi, A.K., Engelbrecht, A. (eds) Computer Vision and Robotics. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-7892-0_9

Download citation

Publish with us

Policies and ethics