Skip to main content

Direct De Novo Molecule Generation Using Probabilistic Diverse Variational Autoencoder

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Abstract

In recent decades, there has been a significant increase in the application of deep learning in drug design. We present a basic method for generating diverse molecules using variational autoencoder. The variational autoencoder is based on recurrent neural network. A string representation SMILES of molecules is used for training the proposed model. A parameter that can be tweaked determines the level of diversity. Interpolation is also performed between two drug molecules in the latent space. The diverse variational autoencoder (dVAE) shows superior results as compare with other state-of-the-art methods. Thus, it can be used to generate controllable diverse molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, Y., et al.: Deep learning for molecular generation. Future Med. Chem. 11(6), 567–597 (2019)

    Google Scholar 

  2. Elton, D.C., et al.: Deep learning for molecular design-a review of the state of the art. Mol. Syst. Des. Eng. 4(4), 828–849 (2019)

    Google Scholar 

  3. Vamathevan, J., et al.: Applications of machine learning in drug discovery and development. Nature Rev. Drug Discovery 18(6), 463–477 (2019)

    Google Scholar 

  4. Sanchez-Lengeling, Benjamin, Aspuru-Guzik, Aláin.: Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400), 360–365 (2018)

    Article  Google Scholar 

  5. Lopyrev, K.: Generating news headlines with recurrent neural networks. arXiv preprint arXiv:1512.01712 (2015)

  6. Briot, J.-P., Hadjeres, G., Pachet, F.-D.: Deep learning techniques for music generation. Springer (2020)

    Google Scholar 

  7. Wang, Z., He, W., Wu, H., Wu, H., Li, W., Wang, H., Chen, E.E.: Chinese poetry generation with planning based neural network. arXiv preprint arXiv:1610.09889 (2016)

  8. Elgammal, A., et al.: Can: creative adversarial networks, generating art by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068 (2017)

  9. Segler, M.H., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698), 604–610 (2018)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer

    Google Scholar 

  11. Chen, H., et al.: The rise of deep learning in drug discovery. Drug Discovery Today 23(6), 1241–1250 (2018)

    Google Scholar 

  12. Weininger, D: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Google Scholar 

  13. Schwalbe-Koda, D., Gómez-Bombarelli, R.: Generative models for automatic chemical design. In: Machine Learning Meets Quantum Physics, pp. 445–467. Springer, Cham (2020)

    Google Scholar 

  14. Arús-Pous, J., et al.: Exploring the GDB-13 chemical space using deep generative models. J. Cheminformatics 11(1), 1–14 (2019)

    Google Scholar 

  15. Polykovskiy, D., et al.: Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol 11, 1931 (2020)

    Google Scholar 

  16. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci. 4(2), 268-276 (2018)

    Google Scholar 

  17. Winter, R., et al.: Efficient multi-objective molecular optimization in a continuous latent space. Chem. Sci. 10(34), 8016–8024 (2019)

    Google Scholar 

  18. Jannik Bjerrum, E., Sattarov, B.: Improving chemical autoencoder latent space and molecular De novo generation diversity with heteroencoders. arXiv e-prints: arXiv-1806 (2018)

    Google Scholar 

  19. Lim, J., et al.: Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminformatics 10(1), 1–9 (2018)

    Google Scholar 

  20. Landrum, G.: RDKit: Open-source cheminformatics. (Online). http://wwwrdkit.org. Accessed 3 Jan 2022, 2012 (2006)

  21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  23. Preuer, K., et al.: Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery. J. Chem. Inf. Model. 58(9), 1736–1741 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Singh Bhadwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh Bhadwal, A., Kumar, K. (2023). Direct De Novo Molecule Generation Using Probabilistic Diverse Variational Autoencoder. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_2

Download citation

Publish with us

Policies and ethics