Skip to main content

Role of Navigation in Endoscopic Spine Surgery

  • Chapter
  • First Online:
Endoscopy of the Spine
  • 565 Accesses

Abstract

Navigation techniques have been employed extensively in spinal instrumentation to reduce radiation exposure, improve accuracy, and avoid iatrogenic injury to nearby critical structures. In endoscopic spine surgery, surgical success relied heavily on accurate localization of instruments, which is technically demanding under fluoroscopic guidance. Various navigation modalities including 3D CT-based, O-arm-based, Ultrasound, and Mixed reality technologies are available nowadays to allow the surgeons to reach the extremely limited surgical field more easily and safely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim CW, Lee Y-P. Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J. 2008;8(4):584–90.

    Article  Google Scholar 

  2. Theocharopoulos N, Perisinakis K, Papadokostakis G, Hadjipavlou A, Gourtsoyiannis N. Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. J Bone Joint Surg Am. 2003;85(9):1698–703. https://doi.org/10.2106/00004623-200309000-00007.

    Article  Google Scholar 

  3. Tecle EI, Najib E, Ahmadieh TYEI, Patel BM, Lall RR, Bendok BR, Smith ZA. Minimizing radiation exposure in minimally invasive spine surgery: lessons learned from neuroendovascular surgery. Neurosurg Clin N Am. 2014;25(2):247–60. https://doi.org/10.1016/j.nec.2013.12.004.

    Article  Google Scholar 

  4. Choi G, Pophale CS, Patel B, Uniyal P. Endoscopic spine surgery. J Korean Neurosurg Soc. 2017;60(5):485–97. https://doi.org/10.3340/jkns.2017.0203.004.

    Article  Google Scholar 

  5. Simpson AK, Lightsey IV HM, Xiong GX, Crawford AM, Minamide A, Schoenfeld AJ. Spinal endoscopy: evidence, techniques, global trends, and future projections. Spine J. 2022;22(1):64–74. https://doi.org/10.1016/j.spinee.2021.07.004.

    Article  Google Scholar 

  6. Liounakos JI, Basil GW, Urakawa H, Wang MY. Intraoperative image guidance for endoscopic spine surgery. Ann Transl Med. 2021;9(1):92. https://doi.org/10.21037/atm-20-1119.

    Article  Google Scholar 

  7. Hahn BS, Park JY. Incorporating new technologies to overcome the limitations of endoscopic spine surgery: navigation, robotics, and visualization. World Neurosurg. 2021;145:712–21. https://doi.org/10.1016/j.wneu.2020.06.188.

    Article  Google Scholar 

  8. Ahn Y. Transforaminal percutaneous endoscopic lumbar discectomy: technical tips to prevent complications. Expert Rev Med Devices. 2014;9(4):361–6. https://doi.org/10.1586/erd.12.23.

    Article  CAS  Google Scholar 

  9. Vialle E, Vialle LR, Contreras W, Jacob Junior C. Anatomical study on the relationship between the dorsal root ganglion and the intervertebral disc in the lumbar spine. Rev Brasil de Ortop (English Edition). 2015;50(4):450–4. https://doi.org/10.1016/j.rboe.2015.06.013.

    Article  Google Scholar 

  10. Ibrahim H, Cosar M, Kirnaz S, Schmidt FA, Wipplinger C, Wong T, Härtl R. Evolving navigation, robotics, and augmented reality in minimally invasive spine surgery. Global Spine J. 2020;10(Suppl. 2):22S–33S. https://doi.org/10.1177/2192568220907896.

    Article  Google Scholar 

  11. Morgenstern R, Morgenstern C, Yeung AT. The learning curve in foraminal endoscopic discectomy: experience needed to achieve a 90% success rate. SAS J. 2007;1(3):100–7. https://doi.org/10.1016/SASJ-2007-0005-RR.

    Article  Google Scholar 

  12. Fan G, Han R, Xin G, Zhang H, Guan X, Fan Y, Wang T, He S. Navigation improves the learning curve of transforamimal percutaneous endoscopic lumbar discectomy. Int Orthop. 2017;41:323–32. https://doi.org/10.1007/s00264-016-3281-5.

    Article  Google Scholar 

  13. Vaishnav AS, Merrill RK, Harvinder S, McAnany SJ, Sravisht I, Himo GC, Albert Todd J, Sheeraz Q. A review of techniques, time demand, radiation exposure, and outcomes of skin-anchored intraoperative 3D navigation in minimally invasive lumbar spinal surgery. Spine. 2020;45(8):E465–76. https://doi.org/10.1097/BRS.0000000000003310.

    Article  Google Scholar 

  14. Singh H, Rote S, Jada A, Bander ED, Almodovar-Mercado GJ, Essayed WI, Härtl R, Anand VK, Schwartz TH, Greenfield JP. Endoscopic endonasal odontoid resection with real-time intraoperative image-guided computed tomography: report of 4 cases. J Neurosurg. 2018;128(8):1486–31. https://doi.org/10.3171/2017.1.JNS162601.

    Article  Google Scholar 

  15. Fessler RG, Sturgill M. Review: complications of surgery for thoracic disc disease. Surg Neurol. 1998;49(6):609–18. https://doi.org/10.1016/s0090-3019(97)00434-5.

    Article  CAS  Google Scholar 

  16. Pait TG, Elias AJ, Tribell R. Thoracic, lumbar, and sacral spine anatomy for endoscopic surgery. Neurosurgery. 2022;51(Suppl. 2):S2-67–78. https://doi.org/10.1097/00006123-200211002-00010.

    Article  Google Scholar 

  17. Rusconi A, Roccucci P, Peron S, Stefini R. Spinal navigation applied to the anterior approach for the resection of thoracic disc herniation: patient series. J Neurosurg: Case Lessons. 2021;1(26):CASE21262. https://doi.org/10.3171/CASE21262.

    Article  Google Scholar 

  18. Cho JY, Choi WC, Lee HY. Posterolateral oblique paraspinal approach with O-arm navigation. 2020. In Junseok bae, sang-ho Lee, and sang-Hyeop Jeon (eds.), Minimally invasive thoracic spine surgery, pp. 221–229. Springer, Singapore. https://doi.org/10.1007/978-981-15-6615-8_24.

  19. Kolcun JPG, Wang MY. Endoscopic treatment of thoracic discitis with robotic access: a case report merging two cutting-edge technologies. World Neurosurg. 2019;126:418–22. https://doi.org/10.1016/j.wneu.2019.03.036.

    Article  Google Scholar 

  20. Campos WK, Gasbarrini A, Boriani S. Case report: curetting osteoid osteoma of the spine using combined video-assisted thoracoscopic surgery and navigation. Clin Orthop Relat Res. 2013;471(2):680–5. https://doi.org/10.1007/s11999-012-2725-5.

    Article  Google Scholar 

  21. Ao S, Wu J, Yu T, Zhang C, Li J, Zheng W, Zhou Y. Percutaneous endoscopic lumbar discectomy assisted by O-arm-based navigation improves the learning curve. Biomed Res Int. 2019;2019:6509409. https://doi.org/10.1155/2019/6509409.

    Article  Google Scholar 

  22. Chen KT, Wei ST, Chun Tseng S, Wei O, Sun LW. Transforaminal endoscopic lumbar discectomy for L5-S1 disc herniation with high iliac crest: technical note and preliminary series. Neurospine. 2020;17(Suppl. 1):S81–7. https://doi.org/10.14245/ns.2040166.060.

    Article  Google Scholar 

  23. Lee SH, Byung UK, Yong A, Choi G, Choi YG, Kwang UA, Shin SW, Kang HY. Operative failure of percutaneous endoscopic lumbar discectomy: a radiologic analysis of 55 cases. Spine. 2006;31(10):E285–90. https://doi.org/10.1097/01.brs.0000216446.13205.7a.

    Article  Google Scholar 

  24. Lee S, Kim SK, Lee SH, Kim WJ, Choi WC, Choi G, Shin SW. Percutaneous endoscopic lumbar discectomy for migrated disc herniation: classification of disc migration and surgical approaches. Eur Spine J. 2007;16:431–7. https://doi.org/10.1007/s00586-006-0219-4.

    Article  Google Scholar 

  25. Schaffer JL, Kambin P. Percutaneous posterolateral lumbar discectomy and decompression with a 6.9-millimeter cannula. Analysis of operative failures and complications. J Bone Joint Surg Am. 1991;73(6):822–31.

    Article  CAS  Google Scholar 

  26. Wu C, Lee CY, Chen SC, Hsu SK, Wu MH. Functional outcomes of full-endoscopic spine surgery for high-grade migrated lumbar disc herniation: a prospective registry-based cohort study with more than 5 years of follow-up. BMC Musculoskelet Disord. 2021;22(58) https://doi.org/10.1186/s12891-020-03891-1.

  27. Xu D, Han S, Wang C, Zhu K, Zhou C, Ma X. The technical feasibility and preliminary results of minimally invasive endoscopic-TLIF based on electromagnetic navigation: a case series. BMC Surg. 2021;21(1):149. https://doi.org/10.1186/s12893-021-01148-9.

    Article  Google Scholar 

  28. Scullen T, Riffle J, Koga S, Kalyvas J. Novel technique of Coregistered intraoperative computed tomography and preoperative magnetic resonance imaging and diffusion tensor imaging navigation in spinal cord tumor resection. Ochsner J. 2019;19(1):43–8.

    Article  Google Scholar 

  29. Rawicki N, Dowdell JE, Sandhu HS. Current state of navigation in spine surgery. Ann Transl Med. 2021;9(1):85. https://doi.org/10.21037/atm-20-1335.

    Article  Google Scholar 

  30. Mendelsohn D, Strelzow J, Dea N, Ford NL, Batke J, Pennington A, Yang K, et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 2016;16(3):343–54. https://doi.org/10.1016/j.spinee.2015.11.020.

    Article  Google Scholar 

  31. Innocenzi G, D’Ercole M, Cardarelli G, et al. Transpedicular approach to thoracic disc herniaton guided by 3D navigation system. Acta Neurochir Suppl (Wien). 2017;124:327–331.

    Google Scholar 

  32. Zhang M, Yan L, Li S, Li Y, Huang P. Ultrasound-guided transforaminal percutaneous endoscopic lumbar discectomy: a new guidance method that reduces radiation doses. Eur Spine J. 2019;28(1):2543–50. https://doi.org/10.1007/s00586-019-05980-9.

    Article  Google Scholar 

  33. Liu X, Sun J, Zheng M, Cui X. Application of mixed reality using optical see-through head-mounted displays in Transforaminal percutaneous endoscopic lumbar discectomy. Biomed Res Int. 2021;2021:9717184–8. https://doi.org/10.1155/2021/9717184.

    Article  Google Scholar 

  34. Yu H, Zhou Z, Lei X, Liu H, Fan G, He S. Mixed reality-based preoperative planning for training of percutaneous transforaminal endoscopic discectomy: a feasibility study. World Neurosurg. 2019;129:e767–75. https://doi.org/10.1016/j.wneu.2019.06.020.

    Article  Google Scholar 

  35. Jin M, Lei L, Li F, Zheng B. Does robot navigation and intraoperative computed tomography guidance help with percutaneous endoscopic lumbar discectomy? A match-paired study. World Neurosurg. 2021;147:e459–67. https://doi.org/10.1016/j.wneu.2020.12.095.

    Article  Google Scholar 

  36. Liounakos JI, Wang MY. Lumbar 3-lumbar 5 robotic-assisted endoscopic Transforaminal lumbar interbody fusion: 2-dimensional operative video. Oper Neurosurg (Hagerstown). 2020;19(1):E73–4. https://doi.org/10.1093/ons/opz385.

    Article  Google Scholar 

  37. Rajasekaran, S., Dilip Chand Raja, Ajoy Prasad Shetty. 2020. Navigation in spine surgery, Section 11, Chapter 14. https://www.wheelessonline.com/issls/section-11-chapter-14-navigation-in-spine-surgery/.

  38. Helm PA, Teichman R, Hartmann SL, Simon D. Spinal navigation and imaging: history, trends, and future. IEEE Trans Med Imaging. 2015;34(8):1738–46. https://doi.org/10.1109/TMI.2015.2391200.

    Article  Google Scholar 

  39. Murphy D, Challacombe B, Khan MS, Dasgupta P. Robotic technology in urology. Postgrad Med J. 2006;82(973):743–7. https://doi.org/10.1136/pgmj.2006.048140.

    Article  CAS  Google Scholar 

  40. Jiang B, Ahmed AK, Zygourakis CC, Kalb S, Zhu AM, Godzik J, Molina CA, Blitz AM, Bydon A, Crawford N, Theodore N. Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory. Chinese Neurosurg J. 2018;4(23) https://doi.org/10.1186/s41016-018-0131-x.

  41. Lieberman IH, Kisinde S, Hesselbacher S. Robotic-assisted pedicle screw placement during spine surgery. JBJS Essent Surg Tech. 2020;10(2):e0020. https://doi.org/10.2106/JBJS.ST.19.00020.

    Article  Google Scholar 

  42. Peng YN, Tsai LC, Hsu HC, Kao CH. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med. 2020;8(13):824. https://doi.org/10.21037/atm-20-1106.

    Article  Google Scholar 

  43. Verma R, Krishan S, Haendlmayer K, Mohsen A. Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5992 pedicle screws. Eur Spine J. 2010;19:370–5. https://doi.org/10.1007/s00586-009-1258-4.

    Article  Google Scholar 

  44. Farber SH, Pacult MA, Godzik J, Walker CT, Turner JD, Porter RW, Uribe JS. Robotics in spine surgery: a technical overview and review of key concepts. Front Surg. 2021;8 https://doi.org/10.3389/fsurg.2021.578674.

  45. Chao Zhang, Junlong Wu, Chuang Xu, Wenjie Zheng, Yong Pan, Changqing Li, Yue Zhou. Minimally invasive full-endoscopic posterior cervical foraminotomy assisted by o-arm-based navigation. pain physician. 2018;21(3):E215–E223.

    Google Scholar 

  46. Wei Shu, Hongwei Zhu, Ruicun Liu, Yongjie Li, Tao Du, Bin Ni, Haipeng Wang, and Tao Sun. Posterior percutaneous endoscopic cervical foraminotomy and discectomy for degenerative cervical radiculopathy using intraoperative O-arm imaging. Wideochir Inne Tech Maloinwazyjne. 2019;14(4):551–9. Published online 2019 Oct 17. https://doi.org/10.5114/wiitm.2019.88660.

  47. Ruihui Wu, Xuqiang Liao, Hong Xia. Radiation exposure to the surgeon during ultrasound-assisted transforaminal percutaneous endoscopic lumbar discectomy: A prospective study. World Neurosurgery. 2017;101:658–5. e1.

    Google Scholar 

  48. Javier Quillo-Olvera, Javier Quillo-Reséndiz, Diego Quillo-Olvera, Michelle Barrera-Arreola, Jin-Sung Kim. Ten-Step biportal endoscopic transforaminal lumbar interbody fusion under computed tomography-based intraoperative navigation: technical report and preliminary outcomes in Mexico. Oper Neurosurg (Hagerstown). 2020;19(5):608–18. https://doi.org/10.1093/ons/opaa226.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, C.M., Lo, C.Y., Lui, T.H. (2023). Role of Navigation in Endoscopic Spine Surgery. In: Lui, T.H. (eds) Endoscopy of the Spine. Springer, Singapore. https://doi.org/10.1007/978-981-19-7761-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7761-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7760-2

  • Online ISBN: 978-981-19-7761-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics