Skip to main content

Low-Noise Amplifier with Co-designed Microstrip Antenna for 60 GHz Wireless Communications

  • Conference paper
  • First Online:
Proceedings of Fourth International Conference on Communication, Computing and Electronics Systems

Abstract

Significant gains in semiconductor technology devices have enabled high-data-rate communications at 60 GHz which stimulates short-range multigigabits-per-second transmission for multimedia applications. This work focusses on the design of the first block of the receiver and the low-noise amplifier with integrated antenna which is considered to be the most challenging task. Over the desired frequency of 60 GHz, microstrip antenna and low-noise amplifier have been designed and integrated with co-design approach. Using inductive source degeneration technique, two-stage common source low-noise amplifier in a 65-nm CMOS technology has been designed and found to produce gain of 12.557 dB and noise figure of 3.626 dB. Antenna efficiency is the amount of RF power delivered to the antenna (from radio) which is actually transmitted into the air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saini J, Agarwal SK (2017) Design a single band microstrip patch antenna at 60 GHz millimeter wave for 5G application. In: 2017 International conference on computer, communications and electronics (Comptelix), pp 227–230. https://doi.org/10.1109/COMPTELIX.2017.8003969

  2. Adhikari P (2008) Understanding millimeter wave wireless communication. Loea Corporation, San Diego

    Google Scholar 

  3. Razavi B (1998) RF microelectronics. Prentice Hall Press, Upper Saddle River, New Jersey, USA

    Google Scholar 

  4. Suraj K, Ammal MN (2018) Design and development of microstrip patch antenna at 2.4 GHz for wireless applications. Indian J Sci Technol 1–5. https://doi.org/10.17485/ijst/2018/v11i23/125651

  5. Balanis CA (ed) Antenna theory analysis and design, 2nd edn. Wiley

    Google Scholar 

  6. Sahana C, Nirmala Devi M, Jayakumar M Dual-band circularly polarized annular ring patch antenna for GPS Aided GEO augmented navigation receivers. IEEE Antennas Wireless Propag. https://doi.org/10.1109/LAWP.2022.3178980

  7. Negi D (2017) Designing of microstrip patch antenna at 60 GHz using strip line feeding for defense applications. Int J Control Theory Appl

    Google Scholar 

  8. Rabbani MS, Ghafouri-Shiraz H (2016) Improvement of microstrip patch antenna gain and bandwidth at 60 GHz and X bands for wireless applications. IET Microwaves Antennas Propag

    Google Scholar 

  9. Bierbuesse D, Bousseaud P, Negra R (2015) Inductorless and cross-coupled wideband LNA with high linearity. In: 2015 Nordic circuits and systems conference (NORCAS): NORCHIP and international symposium on system-on-chip (SoC), pp 1–4. https://doi.org/10.1109/NORCHIP.2015.7364391

  10. Pournamy S, Kumar N (2017) Design of 60 GHz broadband LNA for 5G cellular using 65 nm CMOS technology. In: 2017 7th International conference on communication systems and network technologies (CSNT), pp 320–324. https://doi.org/10.1109/CSNT.2017.8418559

  11. Kong S, Lee HD, Lee M, Park B (2016) A V-band current-reused LNA with a double-transformer-coupling technique. IEEE Microwave Wirel Compon Lett 26(11):942–944. https://doi.org/10.1109/LMWC.2016.2615017

    Article  Google Scholar 

  12. Lee TH (2004) The design Of CMOS radio frequency ıntegrated circuits, 2nd edn. Cambridge University Press

    Google Scholar 

  13. El Oualkadi A, Faitah K, Ouahman AA (2009) mm-Wave CMOS mixer design in 65 nm technology for 60 GHz wireless communications. In: 2009 Mediterrannean microwave symposium (MMS), pp 1–4. https://doi.org/10.1109/MMS.2009.5409796

  14. Emami S, Doan CH, Niknejad AM, Brodersen RW (2005) A 60-GHz down-converting CMOS single-gate mixer. In: 2005 IEEE radio frequency integrated circuits (RFIC) symposium—digest of papers, pp 163–166. https://doi.org/10.1109/RFIC.2005.1489619

  15. Sahana C, Jayakumar M, Kumar VS (2018) High performance dual circularly polarized microstrip patch antenna for satellite communication. In: 2018 International conference on advances in computing, communications and ınformatics (ICACCI), pp 1608–1611. https://doi.org/10.1109/ICACCI.2018.8554817

  16. Pournamy S, Kumar N, Maran P (2021) A linear high frequency gm boosting wideband LNA in 130 nm SiGe HBT with minimum NF of 4.3 dB for WiGig application. J Circuits Syst Comput 31(1). World Scientific Publishing Company. https://doi.org/10.1142/S0218126622500013

  17. Roopika N, Moheth M, Vinod S, Sanjana PM, Balamurugan K (2021) CMOS based variable gain LNA at V-band. In: 2021 International conference on advances in computing and communications (ICACC), pp 1–7. https://doi.org/10.1109/ICACC-202152719.2021.9708219

  18. Prakasam V, Sandeep P Dual edge-fed left hand and right hand circularly polarized rectangular micro-strip patch antenna for wireless communication applications. IRO J Sustain Wireless Syst 2(3):107–117

    Google Scholar 

  19. Christina G (2021) A Review on microstrip patch antenna performance improvement techniques on various applications. J Trends Comput Sci Smart Technol 3(03):175–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garre Pranay Phaneendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phaneendra, G.P., Lekha, G.S., Manvitha, K., Sowmya Sri, N., Balamurgan, K. (2023). Low-Noise Amplifier with Co-designed Microstrip Antenna for 60 GHz Wireless Communications. In: Bindhu, V., Tavares, J.M.R.S., Vuppalapati, C. (eds) Proceedings of Fourth International Conference on Communication, Computing and Electronics Systems . Lecture Notes in Electrical Engineering, vol 977. Springer, Singapore. https://doi.org/10.1007/978-981-19-7753-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7753-4_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7752-7

  • Online ISBN: 978-981-19-7753-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics