Skip to main content

Droplet Microfluidics: A Multiphase System

  • Chapter
  • First Online:
Applied Complex Flow

Part of the book series: Emerging Trends in Mechatronics ((emerg. Trends in Mechatronics))

  • 671 Accesses

Abstract

Being able to control and manipulate multiphase flows in microfluidic channels is beneficial in a wide range of high-throughput biological and chemical applications including generating thousands of droplets in which particles and cells encapsulate, each serving as a microreactor. To design and operate such complex systems, a comprehensive understanding of the fundamentals of multiphase flow at confined microchannels is essential. Even though there are some reviews in the literature on droplet generation using a microfluidic channel, there is a distinct lack of CFD-based reviews. This chapter focuses on numerical research in the literature as Computational Fluid Dynamics (CFD) can provide some insight that could be difficult to obtain experimentally. In this chapter, first, the flow physics of droplet generation in microfluidic channels is explained. Different designs, geometries, and droplet generation regimes are mentioned and then the effect of some parameters in Newtonian and non-Newtonian systems are explored. Then, two cases of complex droplet formation are discussed. We hope this chapter can help readers to understand the flow physics involved in microfluidic microdroplet technologies as well as provide insight into CFD approaches in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate AR, Thiele J, Weitz DA (2011) One-step formation of multiple emulsions in microfluidics. Lab Chip 11:253–258

    Article  Google Scholar 

  2. Adeniyi AA, Morvan HP, Simmons KA (2017) Acoupledeuler-lagrange cfd modelling of droplets-to-film. Aeronaut J 121:1897–1918

    Article  Google Scholar 

  3. Agustini D, Bergamini MF, Marcolino-Junior LH (2016) Low cost microfluidic device based on cotton threads for electroanalytical application. Lab Chip 16:345–352

    Article  Google Scholar 

  4. Ahmadi F, Samlali K, Vo PQ, Shih SC (2019) An integrated dropletdigital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. Lab Chip 19:524–535

    Article  Google Scholar 

  5. Alam MK, Koomson E, Zou H, Yi C, Li CW, Xu T, Yang M (2018) Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta 1044:29–65

    Article  Google Scholar 

  6. Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V et al (2021) Droplet-based microfluidics in biomedical applications. Biofabrication

    Google Scholar 

  7. Andrews MJ, O’Rourke PJ (1996) The multiphase particle-in-cell (mppic) method for dense particulate flows. Int J Multiph Flow 22:379–402

    Article  MATH  Google Scholar 

  8. Anna SL (2016) Droplets and bubbles in microfluidic devices. Annu Rev Fluid Mech 48:285–309

    Article  MATH  Google Scholar 

  9. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  10. Ariyaratne WH, Manjula E, Ratnayake C, MelaaenMC (2018) CFD approaches for modeling gas-solids multiphase flows–a review. In: Proceedings of the 9th EUROSIM congress on modelling and simulation, EUROSIM 2016; The 57th SIMS conference on simulation and modelling SIMS 2016, Linköping University Electronic Press, pp 680–686

    Google Scholar 

  11. Arratia PE, Cramer L, Gollub JP, Durian DJ (2009) The effects of polymer molecular weight on filament thinning and drop breakup in microchannels. New J Phys 11:115006

    Article  Google Scholar 

  12. Askari AH, Shams M, Sullivan PE (2019) Numerical simulation of double emulsion formation in cross-junctional flow-focusing microfluidic device using lattice boltzmann method. J Dispers Sci Technol

    Google Scholar 

  13. Azarmanesh M, Farhadi M, Azizian P (2016) Double emulsion formation through hierarchical flow-focusing microchannel. Phys Fluids 28:032005

    Article  MATH  Google Scholar 

  14. Banerjee U, Jain S, Sen A (2021) Particle encapsulation in aqueous ferrofluid drops and sorting of particle-encapsulating drops from empty drops using a magnetic field. Soft Matter 17:6020–6028

    Article  Google Scholar 

  15. Bashir S, Rees JM, Zimmerman WB (2011) Simulations of microfluidic dropletformationusingthetwo-phaselevelsetmethod. Chem Eng Sci 66:4733–4741

    Article  Google Scholar 

  16. Beneyton T, Wijaya I, Postros P, Najah M, Leblond P, Couvent A, Mayot E, Griffiths AD, Drevelle A (2016) High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics. Sci Rep 6:1–10

    Article  Google Scholar 

  17. Besanjideh M, Shamloo A, Kazemzadeh Hannani S (2021) Enhanced oilin-water droplet generation in a t-junction microchannel using water-based nanofluids with shear-thinning behavior: a numerical study. Phys Fluids 33:012007

    Article  Google Scholar 

  18. Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878

    Article  Google Scholar 

  19. Brenker JC, Collins DJ, Van Phan H, Alan T, Neild A (2016) On-chip droplet production regimes using surface acoustic waves. Lab Chip 16:1675–1683

    Article  Google Scholar 

  20. Caliskan U, Miskovic S (2021) A chimera approach for mp-pic simulations of dense particulate flows using large parcel size relative to the computational cell size. Chem Eng J Adv 5:100054

    Article  Google Scholar 

  21. Chakraborty I, Ricouvier J, Yazhgur P, Tabeling P, Leshansky A (2017) Microfluidic step-emulsification in axisymmetric geometry. Lab Chip 17:3609–3620

    Article  Google Scholar 

  22. Chen C, Zhao Y, Wang J, Zhu P, Tian Y, Xu M, Wang L, Huang X (2018) Passive mixing inside microdroplets. Micromachines 9:160

    Google Scholar 

  23. Chen Q, Li J, Song Y, Christopher DM, Li X (2020) Modeling of newtonian droplet formation in power-law non-newtonian fluids in a flowfocusing device. Heat Mass Transf 56:2711–2723

    Article  Google Scholar 

  24. Chen Y, Sun W, Luo P, Zhang M, Wang Y, Zhang H, Hu P (2019) A new circular-shape microfluidic network for generating gradients of multiple substances-design, demonstration and application. Sens Actuators, B Chem 283:247–254

    Article  Google Scholar 

  25. Chen Y, Wu L, Zhang L (2015) Dynamic behaviors of double emulsion formation in a flow-focusing device. Int J Heat Mass Transf 82:42–50

    Article  Google Scholar 

  26. Chong ZZ, Tan SH, Gañán-Calvo AM, Tor SB, Loh NH, Nguyen NT (2016) Active droplet generation in microfluidics. Lab Chip 16:35–58

    Article  Google Scholar 

  27. Cramer C, Fischer P, Windhab EJ (2004) Drop formation in a co-flowing ambient fluid. Chem Eng Sci 59:3045–3058

    Article  Google Scholar 

  28. Cubaud T, Mason TG (2008) Capillary threads and viscous droplets in square microchannels. Phys Fluids 20:053302

    Article  MATH  Google Scholar 

  29. Dang M, Yue J, Chen G (2015) Numerical simulation of taylor bubble formation in a microchannel with a converging shape mixing junction. Chem Eng J 262:616–627

    Article  Google Scholar 

  30. Dangla R, Kayi SC, Baroud CN (2013) Droplet microfluidics driven by gradients of confinement. Proc Natl Acad Sci 110:853–858

    Article  Google Scholar 

  31. De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161

    Google Scholar 

  32. Devendran C, Albrecht T, Brenker J, Alan T, Neild A (2016) The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Lab Chip 16:3756–3766

    Article  Google Scholar 

  33. Edd JF, Di Carlo D, Humphry KJ, Köster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264

    Article  Google Scholar 

  34. Fantin D (2018) Towards fluid-particle simulations: CFD-DEM coupling. Delft University of Technology

    Google Scholar 

  35. Fatehifar M, Revell A, Jabbari M (2021) Non-newtoniandropletgeneration in a cross-junction microfluidic channel. Polymers 13:1915

    Article  Google Scholar 

  36. Fernandes C, Semyonov D, Ferrás L, Nóbrega JM (2018) Validation of the CFD-DPM solver dpmfoam in openfoam® through analytical, numerical and experimental comparisons. Granular Matter 20:1–18

    Article  Google Scholar 

  37. Fu Y, Zhao S, Bai L, Jin Y, Cheng Y (2016) Numerical study of double emulsion formation in microchannels by a ternary lattice boltzmann method. Chem Eng Sci 146:126–134

    Article  Google Scholar 

  38. Go DB, Atashbar MZ, Ramshani Z, Chang HC (2017) Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective. Anal Methods 9:4112–4134

    Article  Google Scholar 

  39. Gordillo JM, Sevilla A, Campo-Cortés F (2014) Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J Fluid Mech 738:335–357

    Article  Google Scholar 

  40. Green J, Holdø A, Khan A (2007) A review of passive and active mixing systems in microfluidic devices. Int J Multiphys 1:1–32

    Article  Google Scholar 

  41. Guillot P, Colin A (2005) Stability of parallel flows in a microchannel after a T junction. Phys Rev E 72:066301

    Article  Google Scholar 

  42. Gupta A, Kumar R (2010) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8:799–812

    Article  Google Scholar 

  43. Gupta A, Matharoo HS, Makkar D, Kumar R (2014) Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Comput Fluids 100:218–226

    Article  Google Scholar 

  44. Heinrich M, Schwarze R (2020) 3d-coupling of volume-of-fluid and lagrangian particle tracking for spray atomization simulation in openfoam. SoftwareX 11:100483

    Article  Google Scholar 

  45. Hoang D, Van Steijn V, Portela L, Kreutzer M, Kleijn C (2012) Modeling of low-capillary number segmented flows in microchannels using openfoam. In: AIP conference proceedings, American Institute of Physics, pp 86–89

    Google Scholar 

  46. Hoang DA (2013) Breakup of confined droplets in microfluidics. PhD thesis. Technische Universiteit Delft

    Google Scholar 

  47. Hoang DA, van Steijn V, Portela LM, Kreutzer MT, Kleijn CR (2013) Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method. Comput Fluids 86:28–36

    Article  MATH  Google Scholar 

  48. Hussein MH (2015) Extraction of agar from gelidium p (rhodophyta) and green synthesis of agar/silver nanoparticles. J Agric Chem Biotechnol 6:419–434

    Google Scholar 

  49. Jabbari M, Bulatova R, Tok A, Bahl C, Mitsoulis E, Hattel JH (2016) Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis. Mater Sci Eng, B 212:39–61

    Article  Google Scholar 

  50. Kaminski TS, Garstecki P (2017) Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem Soc Rev 46:6210–6226

    Article  Google Scholar 

  51. Kim SH, Lee JH, Braatz RD (2020) Multi-phase particle-in-cell coupled with population balance equation (MP-PIC-PBE) method for multiscale computational fluid dynamics simulation. Comput Chem Eng 134:106686

    Article  Google Scholar 

  52. Koh KS, Wong VL, Ren Y (2018) Microdroplets advancement in newtonian and non-Newtonian microfluidic multiphase system. In: Microfluidics and nanofluidics. IntechOpen, pp 141–159

    Google Scholar 

  53. Kothandaraman A, Harker A, Ventikos Y, Edirisinghe M (2018) Novel preparation of monodisperse microbubbles by integrating oscillating electric fields with microfluidics. Micromachines 9:497

    Article  Google Scholar 

  54. Kumar M, Reddy R, Banerjee R, Mangadoddy N (2021) Effect of particle concentration on turbulent modulation inside hydrocyclone using coupled mppic-vof method. Sep Purif Technol 266:118206

    Article  Google Scholar 

  55. Le NHA, VanPhan H, Yu J, Chan HK, Neild A, Alan T (2018) Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers. Int J Nanomed 13:1353

    Article  Google Scholar 

  56. Li X, He L, He Y, Gu H, Liu M (2019) Numerical study of droplet formation in the ordinary and modified T-junctions. Phys Fluids 31:082101

    Article  Google Scholar 

  57. Li X, He L, Lv S, Xu C, Qian P, Xie F, Liu M (2019) Effects of wall velocity slip on droplet generation in microfluidic T-junctions. RSC Adv 9:23229–23240

    Article  Google Scholar 

  58. Li XB, Li FC, Yang JC, Kinoshita H, Oishi M, Oshima M (2012) Study on the mechanism of droplet formation in T-junction microchannel. Chem Eng Sci 69:340–351

    Article  Google Scholar 

  59. Li Y (2015) Development of a new Euler-Lagrange model for the prediction of scour around offshore structures. PhD thesis. University of Liverpool

    Google Scholar 

  60. Liu H, Zhang Y (2009) Droplet formation in a T-shaped microfluidic junction. J Appl Phys 106:034906

    Article  Google Scholar 

  61. Liu J, Yap YF, Nguyen NT (2011) Numerical study of the formation process of ferrofluid droplets. Phys Fluids 23:072008

    Article  Google Scholar 

  62. Malekzadeh S, Roohi E (2015) Investigation of different droplet formation regimes in a T-junction microchannel using the vof technique in openfoam. Microgravity Sci Technol 27:231–243

    Article  Google Scholar 

  63. Mora AEM et al (2019) Numerical study of the dynamics of a droplet in a T-junction microchannel using openfoam. Chem Eng Sci 196:514–526

    Article  Google Scholar 

  64. Nabavi SA, Gu S, Vladisavljević GT, Ekanem EE (2015) Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices. J Colloid Interface Sci 450:279–287

    Article  Google Scholar 

  65. Nabavi SA, Vladisavljević GT, Gu S, Ekanem EE (2015) Double emulsion production in glass capillary microfluidic device: parametric investigation of droplet generation behaviour. Chem Eng Sci 130:183–196

    Article  Google Scholar 

  66. Nabavi SA, Vladisavljević GT, Manović V (2017) Mechanisms and control of single-step microfluidic generation of multi-core double emulsion droplets. Chem Eng J 322:140–148

    Article  Google Scholar 

  67. O’Connor J, Day P, Mandal P, Revell A (2016) Computational fluid dynamics in the microcirculation and microfluidics: what role can the lattice boltzmann method play. Integr Biol 8:589–602

    Article  Google Scholar 

  68. Ouellette J (2003) A new wave of microfluidic devices. Industrial Physicist 9:14–17

    Google Scholar 

  69. Outokesh M, Amiri HA, Miansari M (2022) Numerical insights into magnetic particle enrichment and separation in an integrated droplet microfluidic system. Chem Eng Process-Process Intensif 170:108696

    Article  Google Scholar 

  70. Quero RF, Bressan LP, da Silva JAF, de Jesus DP (2019) A novel thread-based microfluidic device for capillary electrophoresis with capacitively coupled contactless conductivity detection. Sens Actuators, B Chem 286:301–305

    Article  Google Scholar 

  71. Rayleigh L et al (1879) On the capillary phenomena of jets. Proc R Soc London 29:71–97

    Article  Google Scholar 

  72. Regnault C, Dheeman DS, Hochstetter A (2018) Microfluidic devices for drug assays. High-throughput 7:18

    Article  Google Scholar 

  73. Rodríguez-Rodríguez J, Sevilla A, Martínez-Bazán C, Gordillo JM (2015) Generation of microbubbles with applications to industry and medicine. Annu Rev Fluid Mech 47:405–429

    Article  Google Scholar 

  74. Salomon R, Kaczorowski D, Valdes-Mora F, Nordon RE, Neild A, Farbehi N, Bartonicek N, Gallego-Ortega D (2019) Droplet-based single cell RNAseq tools: a practical guide. Lab Chip 19:1706–1727

    Article  Google Scholar 

  75. Sang L, Hong Y, Wang F (2009) Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods. Microfluid Nanofluid 6:621–635

    Article  Google Scholar 

  76. Sattari A, Hanafizadeh P, Hoorfar M (2020) Multiphase flow in microfluidics: from droplets and bubbles to the encapsulated structures. Adv Coll Interface Sci 282:102208

    Article  Google Scholar 

  77. Sesen M, Alan T, Neild A (2015) Microfluidic plug steering using surface acoustic waves. Lab Chip 15:3030–3038

    Article  Google Scholar 

  78. Sesen M, Alan T, Neild A (2017) Droplet control technologies for microfluidic high throughput screening (μHTS). Lab Chip 17:2372–2394

    Article  Google Scholar 

  79. Shamloo A, Parast FY (2019) Simulation of blood particle separation in a trapezoidal microfluidic device by acoustic force. IEEE Trans Electron Devices 66:1495–1503

    Article  Google Scholar 

  80. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117:7964–8040

    Article  Google Scholar 

  81. Shembekar N, Chaipan C, Utharala R, Merten CA (2016) Dropletbased microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16:1314–1331

    Article  Google Scholar 

  82. Shi H, Nie K, Dong B, Long M, Xu H, Liu Z (2019) Recent progress of microfluidic reactors for biomedical applications. Chem Eng J 361:635–650

    Article  Google Scholar 

  83. Soh GY, Yeoh GH, Timchenko V (2016) Improved volume-of-fluid (VoF) model for predictions of velocity fields and droplet lengths in microchannels. Flow Meas Instrum 51:105–115

    Article  Google Scholar 

  84. Sontti SG, Atta A (2017) CFD analysis of microfluidic droplet formation in non–newtonian liquid. Chem Eng J 330:245–261

    Article  Google Scholar 

  85. Sontti SG, Atta A (2019) Numerical insights on controlled droplet formation in a microfluidic flow-focusing device. Ind Eng Chem Res 59:3702–3716

    Article  Google Scholar 

  86. Suryo R, Basaran OA (2006) Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys Fluids 18:082102

    Article  Google Scholar 

  87. Taassob A, Manshadi MKD, Bordbar A, Kamali R (2017) Monodisperse non-newtonian micro-droplet generation in a co-flow device. J Braz Soc Mech Sci Eng 39:2013–2021

    Article  Google Scholar 

  88. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163

    Article  Google Scholar 

  89. Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19:9127–9133

    Article  Google Scholar 

  90. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz D (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  Google Scholar 

  91. Van Phan H, Coşkun MB, Şeşen M, Pandraud G, Neild A, Alan T (2015) Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. Lab Chip 15:4206–4216

    Article  Google Scholar 

  92. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, Shaw ML, Rodman C et al (2017) Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355

    Google Scholar 

  93. Wang D, Summers JL, Gaskell PH (2008) Modelling of electrokinetically driven mixing flow in microchannels with patterned blocks. Comput Math Appl 55:1601–1610

    Article  MATH  Google Scholar 

  94. Wang M, Kong C, Liang Q, Zhao J, Wen M, Xu Z, Ruan X (2018) Numerical simulations of wall contact angle effects on droplet size during step emulsification. RSC Adv 8:33042–33047

    Article  Google Scholar 

  95. Wang W, Liu Z, Jin Y, Cheng Y (2011) Lbm simulation of droplet formation in micro-channels. Chem Eng J 173:828–836

    Article  Google Scholar 

  96. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Google Scholar 

  97. Wong VL, Loizou K, Lau PL, Graham RS, Hewakandamby BN (2017) Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-set method. Chem Eng Sci 174:157–173

    Article  Google Scholar 

  98. Wong VL, Loizou K, Lau PL, Graham RS, Hewakandamby BN (2019) Characterizing droplet breakup rates of shear-thinning dispersed phase in microreactors. Chem Eng Res Des 144:370–385

    Article  Google Scholar 

  99. Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  Google Scholar 

  100. Xi HD, Zheng H, Guo W, Gañán-Calvo AM, Ai Y, Tsao CW, Zhou J, Li W, Huang Y, Nguyen NT et al (2017) Active droplet sorting in microfluidics: a review. Lab Chip 17:751–771

    Article  Google Scholar 

  101. Xu Q, Nakajima M (2004) The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Appl Phys Lett 85:3726–3728

    Article  Google Scholar 

  102. Xu S, Nisisako T (2020) Polymer capsules with tunable shell thickness synthesized via janus-to-core shell transition of biphasic droplets produced in a microfluidic flow-focusing device. Sci Rep 10:1–10

    Google Scholar 

  103. Yaghoobi M, Saidi MS, Ghadami S, Kashaninejad N (2020) An interface–particle interaction approach for evaluation of the co-encapsulation efficiency of cells in a flow-focusing droplet generator. Sensors 20:3774

    Article  Google Scholar 

  104. Yang CG, Xu ZR, Wang JH (2010) Manipulation of droplets in microfluidic systems. TrAC, Trends Anal Chem 29:141–157

    Article  Google Scholar 

  105. Yang H (2013) Numerical study on droplet formation and cell encapsulation process in a micro T-junction via Lattice Boltzmann method. PhD thesis. The Ohio State University

    Google Scholar 

  106. Yousofvand R, Ghasemi K (2022) A novel microfluidic device for double emulsion formation: the effects of design parameters on droplet production performance. Colloids Surf, A 635:128059

    Article  Google Scholar 

  107. Yu W, Liu X, Zhao Y, Chen Y (2019) Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles. Chem Eng Sci 203:259–284

    Article  Google Scholar 

  108. Zeng Y, Shin M, Wang T (2013) Programmable active droplet generation enabled by integrated pneumatic micropumps. Lab Chip 13:267–273

    Article  Google Scholar 

  109. Zhang C, Gao W, Zhao Y, Chen Y (2018) Microfluidic generation of selfcontained multicomponent microcapsules for self-healing materials. Appl Phys Lett 113:203702

    Article  Google Scholar 

  110. Zhou C, Yue P, Feng JJ (2006) Formation of simple and compound drops in microfluidic devices. Phys Fluids 18:092105

    Article  Google Scholar 

  111. Zhu P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17:34–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Jabbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatehifar, M., Revell, A., Jabbari, M. (2023). Droplet Microfluidics: A Multiphase System. In: Azizi, A. (eds) Applied Complex Flow. Emerging Trends in Mechatronics. Springer, Singapore. https://doi.org/10.1007/978-981-19-7746-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7746-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7745-9

  • Online ISBN: 978-981-19-7746-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics