Skip to main content

Performance Evaluation of Multigrid Brute-Force Solutions of Inverse Kinematics Problem for the Robotis OP2 Humanoid Hand

  • Chapter
  • First Online:
Frontiers in Robotics and Electromechanics

Abstract

Humanoid robots target to remove human labor from multiple working environments including the ones that were initially constructed for a human. Robot limbs operation requires solving an inverse kinematics problem, and a standard solution could involve algebraic, geometric, or numerical approaches. This paper presents two brute-force off-line approaches for a Robotis OP2 humanoid upper limb positioning via forward kinematics. Both approaches calculate and structure all possible solutions for an end-effector pose within a robot workspace in advance using a powerful PC, in the off-line mode. Several levels of workspace and joint space discretization allow a user to select a required for his/her task level of the solution precision considering available onboard resources of the robot. Different discretization levels were evaluated at an offboard PC and at an onboard computer of the Robotis OP2 humanoid. The solutions with different discretization levels were compared in terms of memory consumption and precision. The solutions were initially obtained in the Gazebo simulation and then successfully validated with a real Robotics OP2 humanoid. The presented analysis might be useful for a discretization level selection under onboard memory limitations while dealing with manipulator kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The same test was not performed on the robot onboard computer since we believe that an amount of memory consumed does not depend on an execution environment under the condition of staying within the hardware limitations.

References

  1. Kolpashchikov, D., Gerget, O., Meshcheryakov, R.: Robotics in healthcare. In: Lim, C.P., Chen, Y.W., Vaidya, A., Mahorkar, C., Jain, L.C. (eds.) Handbook of Artificial Intelligence in Healthcare. Intelligent Systems Reference Library, vol. 212, pp. 281–306

    Google Scholar 

  2. Magid, E., Zakiev, A., Tsoy, T., Lavrenov, R., Rizvanov, A.: Automating pandemic mitigation. Adv. Robot. 35(9), 572–89

    Google Scholar 

  3. Freschi, C., Ferrari, V., Melfi, F., Ferrari, M., Mosca, F., Cuschieri, A.: Technical review of the da Vinci surgical telemanipulator. Int. J. Med. Robot. Comput. Assist. Surg. 9(4), 396–406 (2013)

    Article  Google Scholar 

  4. Li, H., Liu, W., Wang, K., Kawashima, K., Magid, E.: A cable-pulley transmission mechanism for surgical robot with backdrivable capability. Robot. Comput.-Integr. Manuf. 49, 328–334 (2018)

    Article  Google Scholar 

  5. Urrea, C., Jara, D.: Design, analysis, and comparison of control strategies for an industrial robotic arm driven by a multi-level inverter. Symmetry 13(86), 1–20 (2021)

    Google Scholar 

  6. Kheddar, A., Caron, S., Gergondet, P., Comport, A., Tanguy, A., Ott, C., Henze, B., Mesesan, G., Englsberger, J., Roa, M.A., Wieber, P.B.: Humanoid robots in aircraft manufacturing: the airbus use cases. IEEE Robot. Autom. Mag. 26(4), 30–45 (2019)

    Article  Google Scholar 

  7. Voronin, V., Zhdanova, M., Semenishchev, E., Zelenskii, A., Cen, Y., Agaian, S.: Action recognition for the robotics and manufacturing automation using 3-D binary micro-block difference. Int. J. Adv. Manuf. Technol. 117, 2319–2330 (2021)

    Article  Google Scholar 

  8. Murphy, R.R.: A decade of rescue robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5448–5449 (2012)

    Google Scholar 

  9. Magid, E., Ozawa, K., Tsubouchi, T., Koyanagi, E., Yoshida, T.: Rescue robot navigation: static stability estimation in random step environment. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 305–316 (2008)

    Google Scholar 

  10. Gavrilova, L., Petrov, V., Kotik, A., Sagitov, A., Khalitova, L., Tsoy, T.: Pilot study of teaching English language for preschool children with a small-size humanoid robot assistant. In: 12th International Conference on Developments in eSystems Engineering (DeSE), pp. 253–260 (2019)

    Google Scholar 

  11. Tian, J., Zhao, J., Zhao, H., Li, Z., Hu, Z.: Research and development of palletizing robot structure and control system. In: IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 316–321 (2019)

    Google Scholar 

  12. Gribkov, A.A., Morozkin, M.S., Kuptsov, V.R., Pivkin, P.M., Zelenskii, A.A.: Industry 4.0 concepts in the machine-tool industry. Russ. Eng. Res. 41(7), 634–635 (2021)

    Google Scholar 

  13. Shabalina, K., Sagitov, A., Svinin, M., Magid, E.: Comparing fiducial markers performance for a task of a humanoid robot self-calibration of manipulators: a pilot experimental study. In: International Conference on Interactive Collaborative Robotics, pp. 249–258 (2018)

    Google Scholar 

  14. Chaminade, T., Zecca, M., Blakemore, S.J., Takanishi, A., Frith, C.D., Micera, S., Dario, P., Rizzolatti, G., Gallese, V., Umiltà, M.A.: Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures. PLoS ONE 5(7), e11577 (2010)

    Article  Google Scholar 

  15. Kahn Jr, P.H., Kanda, T., Ishiguro, H., Gill, B.T., Shen, S., Gary, H.E., Ruckert, J.H.: Will people keep the secret of a humanoid robot? Psychological intimacy in HRI. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 173–180 (2015)

    Google Scholar 

  16. Stasse, O., Flayols, T., Budhiraja, R., Giraud-Esclasse, K., Carpentier, J., Mirabel, J., Del Prete, A., Souères, P., Mansard, N., Lamiraux, F., Laumond, J.P.: TALOS: a new humanoid research platform targeted for industrial applications. In: IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), pp. 689–695 (2017)

    Google Scholar 

  17. Craig, J.J.: Introduction to Robotics: Mechanisms and Controls, 3rd ed. Addison-Wesley (2005)

    Google Scholar 

  18. Kelemen, M., Virgala, I., Lipták, T., Miková, Ľ, Filakovský, F., Bulej, V.: A novel approach for a inverse kinematics solution of a redundant manipulator. Appl. Sci. 8(2229), 1–20 (2018)

    Google Scholar 

  19. Zhang, D., Hannaford, B.: IKBT: solving symbolic inverse kinematics with behavior tree. J. Artif. Intell. Res. 65, 457–486 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Daya, B., Khawandi, S., Akoum, M.: Applying neural network architecture for inverse kinematics problem in robotics. J. Softw. Eng. Appl. 3(3), 230–239 (2010)

    Article  Google Scholar 

  21. KöKer, R.I.: A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Inf. Sci. 222, 528–543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ali, M.A., Park, H.A., Lee, C.S.G.: Closed-form inverse kinematic joint solution for humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 704–709 (2010)

    Google Scholar 

  23. Zagidullin, L., Tsoy, T., Meshcheryakov, R., Hsia, K.-H., Magid, E.: Numerical solution approach for the ROBOTIS OP2 humanoid hand inverse kinematics. In: International Conference on Artificial Life and Robotics, pp. 682–685 (2022)

    Google Scholar 

  24. Robotis Company. http://en.robotis.com/. Accessed 3 March 2022

  25. Morris, K.J., Anderson, J., Lau, M.C., Baltes, J.: Interaction and learning in a humanoid robot magic performance. In: AAAI Spring Symposium Series, pp. 578–581 (2018)

    Google Scholar 

  26. Galin, R., Shiroky, A., Magid, E., Meshcheryakov, R., Mamchenko, M.: Effective functioning of a mixed heterogeneous team in a collaborative robotic system. Inform. Autom. 20(6), 1224–1253 (2021). https://doi.org/10.15622/ia.20.6.2

  27. Klimov, A., Pugachev, P., Polyntsev, E., Prokazina, I., Shandarov, E.: Photon team description for RoboCup humanoid KidSize league (2018)

    Google Scholar 

  28. Theissen, N.A., Gonzalez, M.K., Barrios, A., Archenti, A.: Quasi-static compliance calibration of serial articulated industrial manipulators. Int. J. Autom. Technol. 15(5), 590–598 (2021)

    Article  Google Scholar 

  29. Boby, R.A., Saha, S.K.: Single image based camera calibration and pose estimation of the end-effector of a robot. In: IEEE International Conference on Robotics and Automation, pp. 2435–2440 (2016)

    Google Scholar 

  30. Tsoy, T., Safin, R., Magid, E., Saha, S.K.: Estimation of 4-DoF manipulator optimal configuration for autonomous camera calibration of a mobile robot using on-board templates. In: 15th Siberian Conference on Control and Communications, pp. 1–6 (2021)

    Google Scholar 

Download references

Acknowledgements

This paper has been supported by RFBR, project number 20-38-90257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeni Magid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zagidullin, L., Tsoy, T., Hsia, KH., Martínez-García, E.A., Magid, E. (2023). Performance Evaluation of Multigrid Brute-Force Solutions of Inverse Kinematics Problem for the Robotis OP2 Humanoid Hand. In: Ronzhin, A., Pshikhopov, V. (eds) Frontiers in Robotics and Electromechanics. Smart Innovation, Systems and Technologies, vol 329. Springer, Singapore. https://doi.org/10.1007/978-981-19-7685-8_5

Download citation

Publish with us

Policies and ethics