Skip to main content

Deep Transfer Learning

  • Chapter
  • First Online:
Introduction to Transfer Learning

Abstract

With the development of deep learning, more and more researchers adopt deep neural networks for transfer learning. Compared to traditional machine learning, deep transfer learning increases the performance on various tasks. In addition, deep learning can take the vanilla data as the inputs, thus it has two more benefits: automatic feature extraction and end-to-end training. This chapter will introduce the basic of deep transfer learning, including network structure of deep transfer learning, distribution adaptation, structure adaptation, knowledge distillation, and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.imageclef.org/2014/adaptation.

  2. 2.

    https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA.

  3. 3.

    https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA.

References

  • Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Schölkopf, B., and Smola, A. J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49–e57.

    Article  Google Scholar 

  • Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., and Erhan, D. (2016). Domain separation networks. In Advances in Neural Information Processing Systems, pages 343–351.

    Google Scholar 

  • Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., and Tian, Q. (2020). Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3941–3950.

    Google Scholar 

  • Du, Y., Wang, J., Feng, W., Pan, S., Qin, T., Xu, R., and Wang, C. (2021). AdaRNN: Adaptive learning and forecasting of time series. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 402–411.

    Google Scholar 

  • Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In ICML, pages 1180–1189.

    Google Scholar 

  • Ghifary, M., Kleijn, W. B., and Zhang, M. (2014). Domain adaptive neural networks for object recognition. In PRICAI, pages 898–904.

    Google Scholar 

  • Gong, B., Shi, Y., Sha, F., and Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation. In CVPR, pages 2066–2073.

    Google Scholar 

  • Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2020). Knowledge distillation: A survey. arXiv preprint arXiv:2006.05525.

    Google Scholar 

  • Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. In Advances in Neural Information Processing Systems (NIPS).

    Google Scholar 

  • Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.

    Article  Google Scholar 

  • Hu, Z., Ma, X., Liu, Z., Hovy, E., and Xing, E. (2016). Harnessing deep neural networks with logic rules. In ACL.

    Google Scholar 

  • Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.

    Google Scholar 

  • Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105.

    Google Scholar 

  • Kundu, J. N., Lakkakula, N., and Babu, R. V. (2019). Um-adapt: Unsupervised multi-task adaptation using adversarial cross-task distillation. In Proceedings of the IEEE International Conference on Computer Vision, pages 1436–1445.

    Google Scholar 

  • Li, Y., Wang, N., Shi, J., Hou, X., and Liu, J. (2018). Adaptive batch normalization for practical domain adaptation. Pattern Recognition, 80:109–117.

    Article  Google Scholar 

  • Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). Learning transferable features with deep adaptation networks. In International conference on machine learning, pages 97–105.

    Google Scholar 

  • Long, M., Zhu, H., Wang, J., and Jordan, M. I. (2017). Deep transfer learning with joint adaptation networks. In ICML, pages 2208–2217.

    Google Scholar 

  • Maria Carlucci, F., Porzi, L., Caputo, B., et al. (2017). Autodial: Automatic domain alignment layers. In ICCV, pages 5067–5075.

    Google Scholar 

  • Nayak, G. K., Mopuri, K. R., Shaj, V., Babu, R. V., and Chakraborty, A. (2019). Zero-shot knowledge distillation in deep networks. arXiv preprint arXiv:1905.08114.

    Google Scholar 

  • Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011). Domain adaptation via transfer component analysis. IEEE TNN, 22(2):199–210.

    Google Scholar 

  • Sun, B., Feng, J., and Saenko, K. (2016). Return of frustratingly easy domain adaptation. In AAAI.

    Google Scholar 

  • Sun, B. and Saenko, K. (2016). Deep coral: Correlation alignment for deep domain adaptation. In ECCV, pages 443–450.

    Google Scholar 

  • Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474.

    Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

    Google Scholar 

  • Venkateswara, H., Eusebio, J., Chakraborty, S., and Panchanathan, S. (2017). Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5018–5027.

    Google Scholar 

  • Wang, J., Chen, Y., Feng, W., Yu, H., Huang, M., and Yang, Q. (2020). Transfer learning with dynamic distribution adaptation. ACM TIST, 11(1):1–25.

    Google Scholar 

  • Wang, J., Zheng, V. W., Chen, Y., and Huang, M. (2018). Deep transfer learning for cross-domain activity recognition. In proceedings of the 3rd International Conference on Crowd Science and Engineering, pages 1–8.

    Google Scholar 

  • Yang, Y., Qiu, J., Song, M., Tao, D., and Wang, X. (2020). Distilling knowledge from graph convolutional networks. arXiv preprint arXiv:2003.10477.

    Google Scholar 

  • Zhou, C., Neubig, G., and Gu, J. (2020). Understanding knowledge distillation in non-autoregressive machine translation. In ICLR.

    Google Scholar 

  • Zhu, Y., Zhuang, F., Wang, J., Chen, J., Shi, Z., Wu, W., and He, Q. (2019). Multi-representation adaptation network for cross-domain image classification. Neural Networks, 119:214–221.

    Article  Google Scholar 

  • Zhu, Y., Zhuang, F., Wang, J., Ke, G., Chen, J., Bian, J., Xiong, H., and He, Q. (2020). Deep subdomain adaptation network for image classification. IEEE Transactions on Neural Networks and Learning Systems.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Chen, Y. (2023). Deep Transfer Learning. In: Introduction to Transfer Learning. Machine Learning: Foundations, Methodologies, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-7584-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7584-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7583-7

  • Online ISBN: 978-981-19-7584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics