Skip to main content

Statistical Feature Transformation Methods

  • Chapter
  • First Online:
Introduction to Transfer Learning
  • 1807 Accesses

Abstract

In this chapter, we introduce statistical feature transformation methods for transfer learning. This kind of approaches is extremely popular in existing literature with good results. Especially, they are often implemented in deep neural networks in recent research, demonstrating remarkable performance. Thus, it is important that we understand its very basic knowledge. Note that we will focus on its basics and will not introduce its deep learning extensions, which will be introduced in later sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

    MATH  Google Scholar 

  • Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Schölkopf, B., and Smola, A. J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49–e57.

    Article  Google Scholar 

  • Dorri, F. and Ghodsi, A. (2012). Adapting component analysis. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 846–851. IEEE.

    Google Scholar 

  • Duan, L., Tsang, I. W., and Xu, D. (2012). Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):465–479.

    Article  Google Scholar 

  • Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., and Sriperumbudur, B. K. (2012). Optimal kernel choice for large-scale two-sample tests. In Advances in neural information processing systems, pages 1205–1213.

    Google Scholar 

  • Hou, C.-A., Yeh, Y.-R., and Wang, Y.-C. F. (2015). An unsupervised domain adaptation approach for cross-domain visual classification. In Advanced Video and Signal Based Surveillance (AVSS), 2015 12th IEEE International Conference on, pages 1–6. IEEE.

    Google Scholar 

  • Hsiao, P.-H., Chang, F.-J., and Lin, Y.-Y. (2016). Learning discriminatively reconstructed source data for object recognition with few examples. IEEE Transactions on Image Processing, 25(8):3518–3532.

    Article  MathSciNet  MATH  Google Scholar 

  • Izenman, A. J. (2013). Linear discriminant analysis. In Modern multivariate statistical techniques, pages 237–280. Springer.

    Google Scholar 

  • Kulis, B. et al. (2013). Metric learning: A survey. Foundations and Trends® in Machine Learning, 5(4):287–364.

    Article  MATH  Google Scholar 

  • Long, M., Wang, J., et al. (2013). Transfer feature learning with joint distribution adaptation. In ICCV, pages 2200–2207.

    Google Scholar 

  • Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). Learning transferable features with deep adaptation networks. In International Conference on Machine Learning, pages 97–105.

    Google Scholar 

  • Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011). Domain adaptation via transfer component analysis. IEEE TNN, 22(2):199–210.

    Google Scholar 

  • Parlett, B. N. (1974). The Rayleigh quotient iteration and some generalizations for nonnormal matrices. Mathematics of Computation, 28(127):679–693.

    Article  MathSciNet  MATH  Google Scholar 

  • Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem. In International Conference on Computational Learning Theory, pages 416–426. Springer.

    Google Scholar 

  • Tahmoresnezhad, J. and Hashemi, S. (2016). Visual domain adaptation via transfer feature learning. Knowledge and Information Systems, pages 1–21.

    Google Scholar 

  • Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474.

    Google Scholar 

  • Wang, J., Chen, Y., Feng, W., Yu, H., Huang, M., and Yang, Q. (2020). Transfer learning with dynamic distribution adaptation. ACM TIST, 11(1):1–25.

    Google Scholar 

  • Wang, J., Chen, Y., Hao, S., et al. (2017). Balanced distribution adaptation for transfer learning. In ICDM, pages 1129–1134.

    Google Scholar 

  • Wang, J., Chen, Y., Hu, L., Peng, X., and Yu, P. S. (2018a). Stratified transfer learning for cross-domain activity recognition. In 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom).

    Google Scholar 

  • Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., and Yu, P. S. (2018b). Visual domain adaptation with manifold embedded distribution alignment. In ACMMM, pages 402–410.

    Google Scholar 

  • Yang, L. (2007). An overview of distance metric learning. In Proceedings of the Computer Vision and Pattern Recognition Conference.

    Google Scholar 

  • Yu, C., Wang, J., Chen, Y., and Huang, M. (2019). Transfer learning with dynamic adversarial adaptation network. In The IEEE International Conference on Data Mining (ICDM).

    Google Scholar 

  • Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., and Saminger-Platz, S. (2017). Central moment discrepancy (CMD) for domain-invariant representation learning. arXiv preprint arXiv:1702.08811.

    Google Scholar 

  • Zhang, J., Li, W., and Ogunbona, P. (2017). Joint geometrical and statistical alignment for visual domain adaptation. In CVPR.

    Google Scholar 

  • Zhou, Z.-h. (2016). Machine learning. Tsinghua University Press.

    Google Scholar 

  • Zhu, Y., Zhuang, F., Wang, J., Ke, G., Chen, J., Bian, J., Xiong, H., and He, Q. (2020). Deep subdomain adaptation network for image classification. IEEE Transactions on Neural Networks and Learning Systems.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Chen, Y. (2023). Statistical Feature Transformation Methods. In: Introduction to Transfer Learning. Machine Learning: Foundations, Methodologies, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-7584-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7584-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7583-7

  • Online ISBN: 978-981-19-7584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics