Skip to main content

Adversarial Transfer Learning

  • Chapter
  • First Online:
Introduction to Transfer Learning
  • 1849 Accesses

Abstract

Generative Adversarial Nets (GAN) is one of the most popular research topics in recent years. In this chapter, we introduce adversarial transfer learning methods, which belongs to the implicit feature transformation methods. Specifically, we will introduce GAN-based transfer learning with applications to distribution adaptation and maximum classifier discrepancy. Data generation is another important research topic in adversarial transfer learning. Finally, we present some practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA.

References

  • Anoosheh, A., Agustsson, E., Timofte, R., and Van Gool, L. (2018). ComboGAN: Unrestrained scalability for image domain translation. In CVPR Workshop, pages 783–790.

    Google Scholar 

  • Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. (2010). A theory of learning from different domains. Machine learning, 79(1–2):151–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., and Erhan, D. (2016). Domain separation networks. In Advances in Neural Information Processing Systems, pages 343–351.

    Google Scholar 

  • Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. In ICML, pages 1180–1189.

    Google Scholar 

  • Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(59):1–35.

    MathSciNet  MATH  Google Scholar 

  • Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks. In NIPS.

    Google Scholar 

  • Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773.

    MathSciNet  MATH  Google Scholar 

  • Kim, T., Cha, M., Kim, H., Lee, J. K., and Kim, J. (2017). Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1857–1865. JMLR. org.

    Google Scholar 

  • Liu, M.-Y. and Tuzel, O. (2016). Coupled generative adversarial networks. In Advances in neural information processing systems, pages 469–477.

    Google Scholar 

  • Qiao, F., Zhao, L., and Peng, X. (2020). Learning to learn single domain generalization. In CVPR, pages 12556–12565.

    Google Scholar 

  • Rahman, M. M., Fookes, C., Baktashmotlagh, M., and Sridharan, S. (2019). Multi-component image translation for deep domain generalization. In WACV, pages 579–588. IEEE.

    Google Scholar 

  • Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. (2018). Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3723–3732.

    Google Scholar 

  • Sankaranarayanan, S., Balaji, Y., Castillo, C. D., and Chellappa, R. (2018). Generate to adapt: Aligning domains using generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8503–8512.

    Google Scholar 

  • Shen, J., Qu, Y., Zhang, W., and Yu, Y. (2018). Wasserstein distance guided representation learning for domain adaptation. In AAAI.

    Google Scholar 

  • Somavarapu, N., Ma, C.-Y., and Kira, Z. (2020). Frustratingly simple domain generalization via image stylization. arXiv:2006.11207.

    Google Scholar 

  • Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

    MATH  Google Scholar 

  • Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017). Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558.

    Google Scholar 

  • Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). Adversarial discriminative domain adaptation. In CVPR, pages 2962–2971.

    Google Scholar 

  • Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., and Zhang, W. (2020). Adversarial domain adaptation with domain mixup. In AAAI.

    Google Scholar 

  • Yu, C., Wang, J., Chen, Y., and Huang, M. (2019). Transfer learning with dynamic adversarial adaptation network. In The IEEE International Conference on Data Mining (ICDM).

    Google Scholar 

  • Zhou, K., Yang, Y., Hospedales, T. M., and Xiang, T. (2020). Learning to generate novel domains for domain generalization. In ECCV.

    Google Scholar 

  • Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223–2232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Chen, Y. (2023). Adversarial Transfer Learning. In: Introduction to Transfer Learning. Machine Learning: Foundations, Methodologies, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-7584-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7584-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7583-7

  • Online ISBN: 978-981-19-7584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics