Skip to main content

Current Developments in Bioremediation of Pesticides and Insecticides

  • Conference paper
  • First Online:
Advances in Waste Management (AIR 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 301))

  • 160 Accesses

Abstract

Pests and insects are present in every nook and corner of the surrounding area which causes whooping economic losses. The substance or reagent that reduces the effective growth of these intruders like weeds, fungi, rodents and insects and other dreadful creatures are called pesticides. This chapter addresses the solutions to prohibit the toxic pollutants which spread in the pesticide form and it will become a priority for environmentalists and researchers working in this respective field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarla DN, Erickson LE (2020) Phytoremediation and bioremediation of pesticide-contaminated soil. Appl Sci 2020(10):1217

    Article  Google Scholar 

  2. Velazquez-Fernandez, Martinez-Rizo AB, Ramirez- Sandoval M (2012) Biodegradation and bioremediation of organic pesticides. Pesticides – Recent Trends Pestic Residue Assay 12:254–272

    Google Scholar 

  3. Divya M, Aanand S, Srinivasan A, Ahilan B (2015) Bioremediation – an eco- friendly tool for effluent treatment: a review. Int J Appl Res 1(12):530–537

    Google Scholar 

  4. Chawl N, Bhardwaj J, Singh L (2020) Bioremediation of organophosphate pesticides: current status and future prospective. Plant Arch 20:3405–3412

    Google Scholar 

  5. Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco–friendly role of biodegradation against agricultural pesticides hazards. Afri J Microbiol Res 5(3):177–183

    Google Scholar 

  6. Huang X, He J, Yan X, Hong Q, Chen K, He Q et al (2017) Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pestic Biochem Physiol 143:272–297. https://doi.org/10.1016/j.pestbp.2016.11.010

    Article  CAS  Google Scholar 

  7. Ahmad M, Ahmad I (2014) Bioremediation of pesticides: biotechnology, vol 11: biodegradation and bioremediation

    Google Scholar 

  8. Katayama A, Matsumura F (2009) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12(6):1059–1065

    Article  Google Scholar 

  9. Sutherland TD, Horne I, Harcourt RL, Russell RJ, Oakeshott JG (2002) Isolation and characterization of a Mycobacterium strain that metabolizes the insectide endosulfan. J Appl Microbiol 93:380–389

    Article  CAS  Google Scholar 

  10. Singh BK, Kuhad RC, Singh A, Lal R, Tripathi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225

    Article  CAS  Google Scholar 

  11. Parekh NR, Hartmann A, Charnay MP, Fournier JC (1995) Diversity of carbofuran–degrading soil bacteria and detection of plasmid–encoded sequences homologous to the mcd gene. FEMS Microbiol Ecol 17:149–160

    Article  CAS  Google Scholar 

  12. Sharma R, Peshin R, Shankar U, Kaul V, Sharma S (2015) Impact evaluation indicators of an Integrated Pest Management program in vegetable crops in the subtropical region of Jammu and Kashmir, India. Crop Prot 67:191–199. https://doi.org/10.1016/j.cropro.2014.10.014

    Article  Google Scholar 

  13. Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A et al (2020) Global trends in pesticides: a looming threat and viable alternatives. Ecotoxicol Environ Saf 201:110812. https://doi.org/10.1016/j.ecoenv.2020.110812

    Article  CAS  Google Scholar 

  14. Morya R, Salvachúa D, Thakur IS (2020) Burkholderia: an untapped but promising bacterial genus for the conversion of aromatic compounds. Trends Biotechnol 389:963–975. https://doi.org/10.1016/j.tibtech.2020.02.008

    Article  CAS  Google Scholar 

  15. Arora PK (2020) Bacilli-mediated degradation of xenobiotic compounds and heavy metals. Front Bioeng Biotechnol 8:570307. https://doi.org/10.3389/fbioe.2020.570307

    Article  Google Scholar 

  16. Howard LO (1935) La menace des insectes. Flammarion, Paris, France

    Google Scholar 

  17. Hunt EG, Bischoff AI (1960) Inimical effects on wildlife of periodic DDD applications to Clear Lake. Calif Fish Game 46:91–106

    CAS  Google Scholar 

  18. Mouches C, Pasteur N, Berge JB, Hyrien O, Raymond M, Desaintvincent BR, Desilvestri M, Georghiou GP (1986) Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233(4765):778–780. https://doi.org/10.1126/science.3755546

    Article  CAS  Google Scholar 

  19. Regnault-Roger C, Philogene BJR, Vincent C (2005) Biopesticides of plant origin. Intercept Ltd., Wimborne, UK

    Google Scholar 

  20. Leduc R, Unny TE, McBean EA (1987) Stochastic modeling of the insecticide fenitrothion in water and sediment compartments of a stagnant pond. Water Resour Res 23(7):1105–1112. https://doi.org/10.1029/WR023i007p01105

    Article  CAS  Google Scholar 

  21. Ellgehausen H, Guth JA, Esser HO (1980) Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food-chains. Ecotox Environ Safe 4(2):134–157. https://doi.org/10.1016/0147-6513(80)90015-9

    Article  CAS  Google Scholar 

  22. Oberemok VV, Zaitsev AS, Levchenko NN, Nyadar PM (2015) A brief review of most widely used modern insecticides and prospects for the creation of DNA insecticides. SSN 0013–8738. Entomol Rev 95(7): 824–831

    Google Scholar 

  23. Vaccari A, Strom F, Alleman E (2006) Environmental biology for engineers and scientists

    Google Scholar 

  24. Thierry L, Armelle B, Karine J (2008) Performance of bioaugmentation– assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  Google Scholar 

  25. Philip JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, pp 139–236

    Google Scholar 

  26. Azubuike CC, Chikere CB, Okpokwasili GC (2016) World J Microbiol Biotechnol 32:180

    Google Scholar 

  27. Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 10:116(1–2):39–48

    Google Scholar 

  28. Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremediat Biodegrad 7:343. https://doi.org/10.4172/2155-6199.1000343

    Article  CAS  Google Scholar 

  29. Mary Kensa V (2011) Bioremediation - an overview. J Indust Pollut Control 27(2):161–168

    Google Scholar 

  30. Xi X, Yan J, Quan G, Cui L (2014) Removal of the pesticide pymetrozine from aqueous solution by biochar produced from brewer’s spent grain at different pyrolytic temperatures. BioResources 9:7696–7709

    Article  Google Scholar 

  31. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299

    Article  CAS  Google Scholar 

  32. DiGiovanni GD, Neilson JW, Pepper IL, Sinclair NA (1996) Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol 62:2521

    Article  CAS  Google Scholar 

  33. Top EM, Maila MP, Clerinx M, Goris J, De Vos P, Verstraete W (1999) Methane oxidation as a method to evaluate the removal of 2,4– dichlorophenoxyacetic acid (2,4–D) from soil by plasmid mediated bioaugmentation. FEMS Microb Ecol 28:203

    Article  CAS  Google Scholar 

  34. Newby DT, Gentry TJ, Pepper IL (2000) Comparison of 2,4– dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl Environ Microbiol 66:3399

    Article  CAS  Google Scholar 

  35. Dejonghe W, Goris J, El Fantroussi S, Hofte M, De Vos P, Verstraete W, Top EM (2000) Effect of dissemination of 2,4–dichlorophenoxyacetic acid (2,4–D) degradation plasmids on 2,4–D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297

    Article  CAS  Google Scholar 

  36. Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard® cotton in the USA—Early promises versus today’s reality. Plant J 27:489

    Article  CAS  Google Scholar 

  37. Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt–resistant insects: Proc. Natl Acad Sci USA 96:1840

    Article  CAS  Google Scholar 

  38. Kim SII, Kim SJ, Nam MH (2002) Proteome analysis of aniline– induced proteins in Acinetobacter lwoffi K24. Curr Microbiol 44:61–66

    Article  CAS  Google Scholar 

  39. Huang J, Qiao Ch–L, Li, X. and Xing, J.M. (2001) Cloning and fusion expression of detoxifing gene in Escherichia coli. Acta Genet Sin 28:583–588

    CAS  Google Scholar 

  40. Shaw LJ, Burns RG (2004) Enhanced mineralisation of [U–14C] 2,4– dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pretense. Appl Environ Microbiol 70:4766–4774

    Article  CAS  Google Scholar 

  41. Shaw LJ, Burns RG (2005) Rhizodeposition and the enhanced mineralization of 2,4–dichlorophenoxyacetic acid in soil from the Trifolium pretense rhizosphere. Environ Microbiol 7:191–202

    Article  CAS  Google Scholar 

  42. Piutti S, Hallet S, Rousseaux S, Philippot L, Soulas G, Martin– Laurent, F. (2002) Accelerated mineralisation of atrazine in maize rhizosphere soil. Biol. Fert. Soils 36:434–441

    Article  CAS  Google Scholar 

  43. Zhang R, Cui Z, Zhang X, Jiang J, Gu JD, Li S (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17:465–472

    Article  CAS  Google Scholar 

  44. Devers M, Henry S, Hartmann A, Laurent FM (2005) Horizontal gene transfer of atrazine–degrading genes (atz) from Agrobacterium tumefaciens St96–4 pADP1:Tn5 to bacteria of maize–cultivated soil. Pest Manage. Sci. 61:870–880

    Article  CAS  Google Scholar 

  45. Boltner D, Moreno-Morillas S, Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338

    Article  CAS  Google Scholar 

  46. Arshad M, Hussain S, Saleem M (2007) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364–370

    Google Scholar 

  47. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 8:356–362

    Article  Google Scholar 

  48. Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivarathnakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sivarathnakumar, S., Praveenkumar, R., Vinotharulraj, J., Gayathiri, D., Amirthavarshini, A. (2023). Current Developments in Bioremediation of Pesticides and Insecticides. In: Siddiqui, N.A., Baxtiyarovich, A.S., Nandan, A., Mondal, P. (eds) Advances in Waste Management. AIR 2021. Lecture Notes in Civil Engineering, vol 301. Springer, Singapore. https://doi.org/10.1007/978-981-19-7506-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7506-6_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7505-9

  • Online ISBN: 978-981-19-7506-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics