Skip to main content

Abstract

Conventional energy sources are limited and expected to deplete soon, so natural alternative sustainable and safer sources for the environment have to be explored. Researchers have studied various biomass sources to produce solid, liquid, and gaseous fuels. Different treatment processes like physical, chemical, and enzymatic can produce valuable alternative fuels like biodiesel. The quality and yield of the products depend on the type of reactor, reaction conditions (temperature, pressure, holding time), and particle size of feed. Homogenous base catalysts (like sodium hydroxide), homogenous acid catalysts (like hydrochloric acid), heterogeneous base catalysts (like rice husk), heterogeneous acid catalysts (like zirconia), and biocatalyst like lipase can help to improve the selectivity and energy efficiency of the biofuel production process. Recent trends show the potential of nanocatalysts to enhance the biofuel production capacity. The present chapter discusses various feed sources, treatment processes, and catalysts to produce biodiesel fuel with properties comparable to conventional diesel fuel. Emphasis has been given to the different classifications of catalysts and a comparison between their ability to improve biofuel production. Furthermore, the chapter explores prospects and challenges in developing biodiesel as an alternative energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abomohra AEF, Eladel H, Mohammed S (2022) Dual use of a local Protosiphon isolate BENHA2020 for biodiesel production and antioxidant activity of lipid-free biomass: a novel biorefinery approach for biomass valorization. Renew Energy 184:1104–1111

    Article  CAS  Google Scholar 

  • Aderibigbe FA, Shiru S, Amosa MK et al (2021) Heterogeneous catalysis of second generation oil for biodiesel production: a review. Chem Bio Eng Rev 8(2):78–89

    CAS  Google Scholar 

  • Aigba P, Anyadiegwu F, Ogoke J (2021) Characterization of jatropha oil and its biodiesel. Adv Environ Stud 5:376–381

    Article  Google Scholar 

  • Alagumalai A, Mahian O, Hollmann F, Zhang W (2021) Environmentally benign solid catalysts for sustainable biodiesel production: a critical review. Sci Total Environ 768:144856

    Article  CAS  PubMed  Google Scholar 

  • Aleman-Ramirez JL, Moreira J, Torres-Arellano S et al (2021) Preparation of a heterogeneous catalyst from moringa leaves as a sustainable precursor for biodiesel production. Fuel 284:118983

    Article  CAS  Google Scholar 

  • Ashraful AM, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Imtenan S, Shahir SA, Mobarak HM (2014) Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: a review. Energy Convers Manag 80:202–228

    Article  CAS  Google Scholar 

  • Atabani AE, Silitonga AS, Badruddin IA et al (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16:2070–2093

    Article  Google Scholar 

  • Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN (2013) The effects of catalysts in biodiesel production: a review. J Ind Eng Chem 19(1):14–26

    Article  CAS  Google Scholar 

  • Basha SA, Gopal KR, Jebaraj S (2009) A review on biodiesel production, combustion, emission and performance. Renew Sustain Energy Rev 13:1628–1634

    Article  CAS  Google Scholar 

  • Bashir MA, Wu S, Zhu J et al (2022) Recent development of advanced processing technologies for biodiesel production: a critical review. Fuel Process Technol 227:107120

    Article  CAS  Google Scholar 

  • Bharti MK, Gupta S, Chalia S et al (2020) Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: mini review. J Supercond Nov Magn 33:3651. https://doi.org/10.1007/s10948-020-05657-1

    Article  CAS  Google Scholar 

  • Bharti MK, Chalia S, Thakur P et al (2021) Nanoferrites heterogeneous catalysts for biodiesel production from soybean and canola oil: a review. Environ Chem Lett 19:1–20

    Article  Google Scholar 

  • Bhuiya MMK, Rasul MG, Khan MMK et al (2016) Prospects of 2nd generation biodiesel as a sustainable fuel – Part: 1 Selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sustain Energy Rev 55:1109–1128

    Article  CAS  Google Scholar 

  • Boz N, Degirmenbasi N, Kalyon DM (2009) Conversion of biomass to fuel: transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Appl Catal B 89:590–596

    Article  CAS  Google Scholar 

  • Bukkarapu KR, Krishnasamy A (2022) Predicting engine fuel properties of biodiesel and biodiesel-diesel blends using spectroscopy based approach. Fuel Process Technol 230:107227

    Article  CAS  Google Scholar 

  • Calero J, Luna D, Sancho ED et al (2014) Development of a new biodiesel that integrates glycerol, by using CaO as heterogeneous catalyst, in the partial methanolysis of sunflower oil. Fuel 122:94–102

    Article  CAS  Google Scholar 

  • Celante D, Schenkel JVD, de Castilhos F (2018) Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide. Fuel 212:101–107

    Article  CAS  Google Scholar 

  • Chang AC, Louh RF, Wong D et al (2011) Hydrogen production by aqueous-phase biomass reforming over carbon textile supported Pt-Ru bimetallic catalysts. Int J Hydrogen Energy 36:8794–8799

    Article  CAS  Google Scholar 

  • Changmai B, Sudarsanam P, Rokhum L (2020) Biodiesel production using a renewable mesoporous solid catalyst. Ind Crop Prod 145:111911

    Article  CAS  Google Scholar 

  • Cheng F, Li X (2018) Preparation and application of biochar-based catalysts for biofuel production. Catalysts 8(9):346

    Article  Google Scholar 

  • Chopade SG, Kulkarni KS, Kulkarni AD et al (2012) Solid heterogeneous catalysts for production of biodiesel from trans-esterification of triglycerides with methanol: a review. Acta Chim Pharm Indica 2(1):8–14

    CAS  Google Scholar 

  • Chouhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energy Rev 15:4378–4399

    Article  CAS  Google Scholar 

  • Da Silva C, Oliveira JV (2014) Biodiesel production through non-catalytic supercritical transesterification: current state and perspectives. Braz J Chem Eng 31(2):271

    Article  Google Scholar 

  • Devi A, Singh A, Bajar S et al (2021) Nanomaterial in liquid biofuel production: applications and current status. Environ Sustain 4:343–353

    Article  CAS  Google Scholar 

  • Diamantopoulos N (2015) Comprehensive review on the biodiesel production using solid acid heterogeneous catalysts. J Thermodyn Catal 06:1–8

    Article  Google Scholar 

  • el Sherbiny SA, Refaat AA, el Sheltawy ST (2010) Production of biodiesel using the microwave technique. J Adv Res 1:309–314

    Article  Google Scholar 

  • Farooq M, Ramli A, Subbarao D (2013) Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J Clean Prod 59:131–140

    Article  CAS  Google Scholar 

  • Feyzi M, Hassankhani A, Rafiee H (2013) Preparation and characterization of CsAlFe3O4 nanocatalysts for biodiesel production. Energy Convers Manage 71:62–68

    Article  CAS  Google Scholar 

  • Gad MS, Ismail MA (2021) Effect of waste cooking oil biodiesel blending with gasoline and kerosene on diesel engine performance, emissions and combustion characteristics. Process Saf Environ Prot 149:1–10

    Article  CAS  Google Scholar 

  • Gardy J, Nourafkan E, Osatiashtiani A et al (2019) A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Appl Catal B Environ 259:118093

    Article  CAS  Google Scholar 

  • Ghesti GF, Silveira EA, Guimarães MG, Evaristo RBW, Costa M (2022) Towards a sustainable waste-to-energy pathway to pequi biomass residues: biochar, syngas, and biodiesel analysis. Waste Manag 143:144–156

    Article  CAS  PubMed  Google Scholar 

  • Goli J, Sahu O (2018) Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production. Renew Energy 128:142–154

    Article  CAS  Google Scholar 

  • Gupta AR, Rathod VK (2021) Application of catalysts in biodiesel production. Chapter 3. In: Inamuddin, Ahamed MI, Boddula R, Rezakazemi M (eds) Biodiesel technology and applications. https://doi.org/10.1002/9781119724957.ch3

    Chapter  Google Scholar 

  • Halimatussadiah A, Nainggolan D, Yui S, Moeis FR, Siregar AA (2021) Progressive biodiesel policy in Indonesia: does the Government’s economic proposition hold. Renew Sustain Energy Rev 150:111431

    Article  Google Scholar 

  • Hariprasath P, Selvamani ST, Vigneshwar M et al (2019) Comparative analysis of cashew and canola oil biodiesel with homogeneous catalyst by transesterification method. Mater Today Proc 16:1357

    Article  CAS  Google Scholar 

  • Hossain ABMS, Mazen MA (2010) Effects of catalyst types and concentrations on biodiesel production from waste soybean oil biomass as renewable energy and environmental recycling process. Aust J Crop Sci 4(7):550–555

    CAS  Google Scholar 

  • Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88:2685–2690

    Article  CAS  Google Scholar 

  • Jayakumar M, Karmegam N, Gundupalli MP et al (2021) Heterogeneous base catalysts: synthesis and application for biodiesel production – a review. Bioresour Technol 331:125054

    Article  CAS  PubMed  Google Scholar 

  • Kanwar Gaur R, Goyal R (2022) A review: Effect on performance and emission characteristics of waste cooking oil biodiesel-diesel blends on IC engine. Mater Today Proc 63:643–646

    Article  CAS  Google Scholar 

  • Kawashima A, Matsubara K, Honda K (2009) Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresour Technol 100(2):696–700

    Article  CAS  PubMed  Google Scholar 

  • Khan K, Kumar G, Sharma AK, Kumar PS, Mandal C, Chintala V (2018) Performance and emission characteristics of a diesel engine using complementary blending of castor and karanja biodiesel. Biofuels 9:53–60

    Article  CAS  Google Scholar 

  • Kim DS, Hanifzadeh M, Kumar A (2018) Trend of biodiesel feedstock and its impact on biodiesel emission characteristics. Environ Prog Sustain Energy 37(1):7–19

    Article  CAS  Google Scholar 

  • Kirubakaran K, Arul Mozhi Selvan V (2018) Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. J Environ Chem Eng 6:4490–4503

    Article  Google Scholar 

  • Kohler M (2019) Economic assessment of ethanol production. In: Basile A, Iulianelli A, Dalena F, VeziroÄŸlu TN (eds) Ethanol. Elsevier, Oxford, pp 505–521

    Chapter  Google Scholar 

  • Kongprawes G, Wongsawaeng D, Ngaosuwan K et al (2021) Low-temperature and atmospheric pressure plasma for palm biodiesel hydrogenation. Sci Rep 11:14224. https://doi.org/10.21203/rs.3.rs-282528/v1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzu M, Haidaka J (2012) Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel 93:1–12

    Article  CAS  Google Scholar 

  • Kumar N, Sonthalia A, Tomar M et al (2020) An experimental investigation on spray, performance and emission of hydrotreated waste cooking oil blends in an agricultural engine. Int J Engine Res 22(7):1468087420928734

    Google Scholar 

  • Kumar P, Sharma PK, Tripathi S et al (2021) Realization of second generation of biofuel and extraction techniques. In: Prasad L, Pradahan S, Naik SN (eds) Biofuel extraction techniques. Wiley, Hoboken, NJ

    Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28(4):500–518

    Article  CAS  PubMed  Google Scholar 

  • Lapuerta M, Armas O, Fernandez JR (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34:198–223

    Article  CAS  Google Scholar 

  • Laskar LB, Rajkumari K, Gupta R et al (2018) Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv 8:20131–20142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083

    Article  CAS  Google Scholar 

  • Lima M, da Silva Junior CA, Pelissari TD, Lourençoni T, Luz IMS, Lopes FJA (2020) Sugarcane: Brazilian public policies threaten the Amazon and Pantanal biomes. Perspect Ecol Conserv 18:210–212

    Google Scholar 

  • Mahmood H, Moniruzzaman M, Iqbal T, Khan MJ (2019) Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Curr Opin Green Sustain Chem 20:18–24

    Article  Google Scholar 

  • Mahmud S, Haider ASMR, Shahriar ST, Salehin S, Hasan ASMM, Johansson MT (2022) Bioethanol and biodiesel blended fuels—feasibility analysis of biofuel feedstocks in Bangladesh. Energy Rep 8:1741–1756

    Article  Google Scholar 

  • Marchetti JM, Pedernera MN, Schbib NS (2011) Production of biodiesel from acid oil using sulfuric acid as catalyst: kinetics study. Int J Low Carbon Technol 6:38–43

    Article  CAS  Google Scholar 

  • Mishra VK, Goswami R (2018) A review of production, properties and advantages of biodiesel. Biofuels 9(2):273–289

    Article  CAS  Google Scholar 

  • Mohiddin MNB, Tan YH, Seow YX et al (2021) Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: a review. J Ind Eng Chem 98:60–81

    Article  CAS  Google Scholar 

  • Muthu H, Selvabala VS, Varathachary TK et al (2010) Synthesis of biodiesel from neem oil using sulfated zirconia via transesterification. Braz J Chem Eng 27(4):601–608

    Article  CAS  Google Scholar 

  • Nagappan M, Devaraj AM, Babu J, Vibhav Saxena N, Prakash O, Kumar P, Sharma A (2022) Impact of additives on combustion, performance and exhaust emission of biodiesel fueled direct injection diesel engine. Mater Today Proc 62:2326

    Article  CAS  Google Scholar 

  • Nakatani N, Takamori H, Takeda K et al (2009) Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour Technol 100(3):1510–1513

    Article  CAS  PubMed  Google Scholar 

  • Nasreen S, Nafees ML, Qureshi LA et al (2018) Review of catalytic transesterification methods for biodiesel production. In: Krzysztof B (ed) Biofuels - state of development. IntechOpen, London, pp 93–119

    Google Scholar 

  • Nath B, Das B, Kalita P, Basumatary S (2019) Waste to value addition: utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. J Clean Prod 239:118112

    Article  CAS  Google Scholar 

  • Nath B, Kalita P, Das B, Basumatary S (2020) Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel. Renew Energy 151:295–310

    Article  CAS  Google Scholar 

  • Navas MB, Lick ID, Bolla PA et al (2018) Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chem Eng Sci 187:444–454

    Article  CAS  Google Scholar 

  • Oliveira JP, Antunes PWP, Mordente TZ et al (2017) Biodiesel production from scum of grease traps and sludge from septic tanks. Clean Technol Environ Policy 19(4):1231

    Article  CAS  Google Scholar 

  • OPEC (2021) OPEC monthly oil market report April 2021. OPEC, Vienna, Austria. https://www.opec.org/opec_web/en/publications/338.htm

    Google Scholar 

  • Pali HS, Kumar N (2016) Comparative assessment of sal and kusum biodiesel properties. Energy Sour A Recovery Util Environ Effects 38:3391–3396

    Article  CAS  Google Scholar 

  • Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health 15(1):16

    Article  Google Scholar 

  • Ponnappan VS, Babu MD, Nagappan B et al (2021) Investigation on the effect of ultrasound irradiation on biodiesel properties and transesterification parameters. Environ Sci Pollut Res 28:64769–64777

    Article  CAS  Google Scholar 

  • Punia P, Bharti MK, Chalia S et al (2020) Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment - a review. Ceram Int 47(2):1526–1550

    Article  Google Scholar 

  • Quesada J, Olivares P (2010) Supercritical biodiesel production from raw soybean oil. J Biofuels 1:115

    Article  Google Scholar 

  • Rana K, Thakur P, Sharma P et al (2015) Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram Int 41:4492–4497

    Article  CAS  Google Scholar 

  • Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Cleaner Product 193:734–747. https://doi.org/10.1016/j.jclepro.2018.05.033

    Article  Google Scholar 

  • Shu Q, Gao J, Nawaz Z et al (2010) Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl Energy 87(8):2589–2596

    Article  CAS  Google Scholar 

  • Silva GF, Camargo FL, Ferreira ALO (2011) Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Process Technol 92(3):407–413

    Article  CAS  Google Scholar 

  • Singh D, Sharma D, Soni SL et al (2021) A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas. Fuel 285:1–19

    Article  Google Scholar 

  • Somorjai GA, Materer N (1994) Surface structures in ammonia synthesis. Top Catal 1:215–231

    Article  CAS  Google Scholar 

  • Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38(11):6977–6988. https://doi.org/10.1016/j.enpol.2010.06.066

    Article  Google Scholar 

  • Suzihaque MUH, Alwi H, Kalthum Ibrahim U, Abdullah S, Haron N (2022) Biodiesel production from waste cooking oil: a brief review. Mater Today Proc 63:S490–S495

    Article  CAS  Google Scholar 

  • Tamjidi S, Esmaeili H, Moghadas BK (2021) Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: a review study. J Clean Prod 305:127200

    Article  CAS  Google Scholar 

  • Tan CH, Nagarajan D, Show PL et al (2019) Biodiesel from microalgae. In: Pandey A, Larroche C, Dussap CG, Gnansounou E, Khanal SK, Ricke S (eds) Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Elsevier, Amsterdam, pp 601–628

    Chapter  Google Scholar 

  • Thakur P, Chahar D, Taneja S et al (2020) A review on MnZn ferrites: synthesis, characterization and applications. Ceram Int 46:15740–15763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topare NS, Paitl KD, Naik P et al (2015) Application of ultrasound for synthesis of biodiesel. Emerg Trends Chem Eng 2(1):1–8

    CAS  Google Scholar 

  • UN (2015) Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

  • Velusamy K, Devanand J, Senthil Kumar P, Soundarajan K et al (2021) A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel 306:121632

    Article  CAS  Google Scholar 

  • Verma P, Dwivedi G, Sharma MP (2017) Comprehensive analysis on potential factors of ethanol in Karanja biodiesel production and its kinetic studies. Fuel 188:586

    Article  CAS  Google Scholar 

  • Vyas AP, Verma JL, Subrahmanyam N (2010) A review on FAME production processes. Fuel 89:1–9

    Article  CAS  Google Scholar 

  • Wan L, Liu H, Nasreen S et al (2018) High temperature transesterification of soybean oil with methanol using manganese carbonate as catalyst. Chem Ind Chem Eng Q 24(1):9–22

    Article  CAS  Google Scholar 

  • Wang H, Peng X, Zhang H, Yang S, Li H (2021) Microorganisms-promoted biodiesel production from biomass: a review. Energy Convers Manag 12:100137

    CAS  Google Scholar 

  • Williams L (2015) Synthesis and characterization of biodiesel fuels by clay catalyzed transesterifications. Stephen F. Austin State University

    Google Scholar 

  • Zahan K, Kano M (2018) Biodiesel production from palm oil its by-products and mill effluent: a review. Energies 11(8):2132. https://doi.org/10.3390/en11082132

    Article  CAS  Google Scholar 

  • Zhang PB, Shi M, Liu YL et al (2016) Influence of crystal of Fe2O3 in magnetism and activity of nanoparticle CaO@Fe2O3 for biodiesel production. Fuel 186:787–791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P.J., Sharma, P.K., Chaturvedi, S. (2023). Biodiesel from Biomass: Production of Sustainable Biodiesel Fuel. In: Pathak, P.D., Mandavgane, S.A. (eds) Biorefinery: A Sustainable Approach for the Production of Biomaterials, Biochemicals and Biofuels. Springer, Singapore. https://doi.org/10.1007/978-981-19-7481-6_10

Download citation

Publish with us

Policies and ethics