Skip to main content

The Role of Telomerase Activators in Antiaging Strategies and their Clinical Potential

  • Chapter
  • First Online:
Emerging Anti-Aging Strategies

Abstract

Recent studies have focused on telomere shortening for the prevention of cellular aging and diseases related to aging. Re-extension of shortened telomeres is achieved by various naturally or synthetically produced telomerase activators. Naturally, every cell division can induce telomere shortening, as well as factors such as food, lifestyle, stress, and past diseases that affect the shortening of telomeres. Age-related diseases such as cardiovascular, cognitive, neurodegenerative diseases, and cancer are seen as a result of aging of the cell due to telomere shortening and thus aging of the organism. Telomerase activators play a very important role in the prevention of age-related conditions and diseases. This review focuses on telomeric aging, the molecular mechanism of action of telomerase activators, and the clinical importance of these activators by compiling studies in the context of increasing human lifespan and healthy aging. In this perspective, this study examined the telomerase activators produced both naturally and synthetically, revealing the signaling pathways used by these activators and their clinically relevant concentrations. It will also guide future research that can be conducted to determine the function of telomerase activation in the treatment of human aging-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baluk P, Naikawadi RP, Kim S et al (2020) Lymphatic proliferation ameliorates pulmonary fibrosis after lung injury. Am J Pathol 190:2355–2375

    Article  CAS  Google Scholar 

  • Baruch-Eliyahu N, Rud V, Braiman A et al (2019) Telomerase increasing compound protects hippocampal neurons from amyloid beta toxicity by enhancing the expression of neurotrophins and plasticity related genes. Sci Rep 9:1–14

    Article  Google Scholar 

  • Bernardes de Jesus B, Schneeberger K, Vera E et al (2011) The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10:604–621

    Article  CAS  Google Scholar 

  • Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309

    Article  CAS  Google Scholar 

  • Boccardi V, Paolisso G (2014) Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev 15:1–5

    Article  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  Google Scholar 

  • Calina D, Buga AM, Mitroi M et al (2020) The treatment of cognitive, behavioural and motor impairments from brain injury and neurodegenerative diseases through cannabinoid system modulation-evidence from in vivo studies. J Clin Med 9:2395

    Article  CAS  Google Scholar 

  • Canela A, Maman Y, Jung S et al (2017) Genome organization drives chromosome fragility. Cell 170:507–521

    Article  CAS  Google Scholar 

  • Chen Y (2019) The structural biology of the shelterin complex. Biol Chem 400:457–466

    Article  CAS  Google Scholar 

  • Chen R, Zhu J, Dong Y et al (2015) Suppressor of ty homolog-5, a novel tumor-specific human telomerase reverse transcriptase promoter-binding protein and activator in colon cancer cells. Oncotarget 6:32841–32855

    Article  Google Scholar 

  • Cohen SB, Graham ME, Lovrecz GO et al (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  CAS  Google Scholar 

  • Cui Z, Guo Z, Miao J et al (2013) The genus Cynomorium in China: an ethnopharmacological and phytochemical review. J Ethnopharmacol 147:1–15

    Article  CAS  Google Scholar 

  • de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540

    Article  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  Google Scholar 

  • de Lange T (2009) How telomeres solve the end-protection problem. Science 326:948–952

    Article  Google Scholar 

  • Diotti R, Loayza D (2011) Shelterin complex and associated factors at human telomeres. Nucleus 2:119–135

    Article  Google Scholar 

  • Dong XX, Hui ZJ, Xiang WX et al (2007) Ginkgo biloba extract reduces endothelial progenitor-cell senescence through augmentation of telomerase activity. J Cardiovasc Pharmacol 49:111–115

    Article  CAS  Google Scholar 

  • Dow CT, Harley CB (2016) Evaluation of an oral telomerase activator for early age-related macular degeneration - a pilot study. Clin Ophthalmol 10:243–249

    Article  CAS  Google Scholar 

  • Eitan E, Tichon A, Gazit A et al (2012) Novel telomerase-increasing compound in mouse brain delays the onset of amyotrophic lateral sclerosis. EMBO Mol Med 4:313–329

    Article  CAS  Google Scholar 

  • Eitsuka T, Nakagawa K, Suzuki T et al (2005) Polyunsaturated fatty acids inhibit telomerase activity in DLD-1 human colorectal adenocarcinoma cells: a dual mechanism approach. Biochim Biophys Acta 1737:1–10

    Article  CAS  Google Scholar 

  • Epel E (2012) How “reversible” is telomeric aging? Cancer Prev Res 5:1163–1168

    Article  Google Scholar 

  • Fauce SR, Jamieson BD, Chin AC et al (2008) Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol 181:7400–74006

    Article  CAS  Google Scholar 

  • Fernandez ML, Thomas MS, Lemos BS et al (2018) TA-65, a telomerase activator improves cardiovascular markers in patients with metabolic syndrome. Curr Pharm Des 24:1905–1911

    Article  CAS  Google Scholar 

  • Fragkiadaki P, Renieri E, Kalliantasi K et al (2022) Τelomerase inhibitors and activators in aging and cancer: a systematic review. Mol Med Rep 25:158

    Article  CAS  Google Scholar 

  • Greider CW (1991) Telomeres. Curr Opin Cell Biol 3:44–451

    Article  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43:405–413

    Article  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1987) The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–898

    Article  CAS  Google Scholar 

  • Haendeler J, Hoffman J, Diehl JF et al (2004) Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 94:768–775

    Article  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  Google Scholar 

  • Harley CB, Liu W, Blasco M et al (2011) A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 14:45–56

    Article  CAS  Google Scholar 

  • Harley CB, Liu W, Flom PL et al (2013) A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response. Rejuvenation Res 16:386–395

    Article  CAS  Google Scholar 

  • Harman B (1992) Free radical theory of aging: history. In: Emerit I, Chance B (eds) Free radicals and aging. Birkhäuser, Basel, pp 1–10

    Google Scholar 

  • Harrington L, Zhou W, McPhail T et al (1997) Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 11:3109–3115

    Article  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  Google Scholar 

  • Huang P, Riordan SM, Heruth DP (2015) A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells. Oncotarget 6:10812–10824

    Article  Google Scholar 

  • Hughes WE, Beyer AM, Gutterman DD (2019) Integrative effects of autophagy and telomerase on arteriolar flow-mediated dilation in health and coronary artery disease. Faeeb J 33(684):2

    Google Scholar 

  • Iachine I, Skytthe A, Vaupel JW et al (2006) Genetic influence on human lifespan and longevity. Hum Gen 119:312–321

    Article  Google Scholar 

  • Jäger K, Walter M (2016) Therapeutic targeting of telomerase. Genes 7:39

    Article  Google Scholar 

  • Jin K (2010) Modern biological theories of aging. Aging Dis 1:72–74

    Google Scholar 

  • Kawauchi K, Akiyama M, Yamada O (2013) The mechanisms of telomere and telomerase regulation in hematologic malignancies. Front Clin Drug Res Anti Cancer Agents 1:115

    Article  Google Scholar 

  • Kibe T, Zimmermann M, de Lange T (2017) TPP1 blocks an ATR-mediated resection mechanism at telomeres. Mol Cell 66:300

    Article  CAS  Google Scholar 

  • Kim YJ, Yoo JE, Jeon Y et al (2018) Suppression of PROX1-mediated TERT expression in hepatitis B viral hepatocellular carcinoma. Int J Cancer 143:3155–3168

    Article  CAS  Google Scholar 

  • Kipling D, Faragher RGA (1999) Ageing hard or hardly ageing? Nature 398:191–193

    Article  CAS  Google Scholar 

  • Klapper W, Parwaresch R, Krupp G (2001) Telomere biology in human aging and aging syndromes. Mech Ageing Dev 122:695–712

    Article  CAS  Google Scholar 

  • Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta 1790:1049–1058

    Article  CAS  Google Scholar 

  • Le Saux CJ, Davy P, Brampton C et al (2013) A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One 8:e58423

    Article  Google Scholar 

  • Lepperdinger G, Berger P, Breitenbach M et al (2008) The use of genetically engineered model systems for research on human aging. Front Biosci 13:7022–7031

    Article  CAS  Google Scholar 

  • Li J, Zhang N, Zhang R et al (2017) CDC5L promotes hTERT expression and colorectal tumor growth. Cell Physiol Biochem 41:2475–2488

    Article  CAS  Google Scholar 

  • Li W, Qian C, Ma F et al (2022) MAPK/ERK-CBP-RFPL-3 mediates adipose-derived stem cell-induced tumor growth in breast cancer cells by activating telomerase reverse transcriptase expression. Stem Cells Int 2022:1–14

    Article  Google Scholar 

  • Liu JP (1999) Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 13:2091–2104

    Article  CAS  Google Scholar 

  • Liu M, Yin Y, Ye X et al (2013) Resveratrol protects against age-associated infertility in mice. Hum Reprod 28:707–717

    Article  CAS  Google Scholar 

  • Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour supression and genome instability. Nat Rev Mol Cell Biol 18:175–186

    Article  CAS  Google Scholar 

  • Nicholls C, Li H, Wang JQ et al (2011) Molecular regulation of telomerase activity in aging. Protein Cell 2:726–738

    Article  CAS  Google Scholar 

  • Nisato RE, Harrison JA, Buser R et al (2004) Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am J Pathol 165:11–24

    Article  CAS  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–181

    Article  Google Scholar 

  • Qin Y, Chen W, Xiao Y et al (2015) RFPL3 and CBP synergistically upregulate hTERT activity and promote lung cancer growth. Oncotarget 6:27130–27145

    Article  Google Scholar 

  • Ren H, Zhao T, Wang X et al (2010) Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells. Biochem Biophys Res Commun 394:59–63

    Article  CAS  Google Scholar 

  • Rice C, Shastrula PK, Kossenkov AV et al (2017) Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat Commun 8:14928

    Article  CAS  Google Scholar 

  • Saitoh SI, Kokubun T, Miura S et al (2019) Telomerase activation is a novel therapeutic option to develop collateral growth after ischemia in aging. J Am Coll Cardiol 73:2051

    Article  Google Scholar 

  • Salvador L, Singaravelu G, Harley CB et al (2016) A natural product telomerase activator lengthens telomeres in humans: a randomized, double blind, and placebo controlled study. Rejuvenation Res 19:478–484

    Article  CAS  Google Scholar 

  • Sanokawa-Akakura R, Akakura S, Tabibzadeh S (2016) Replicative senescence in human fibroblasts is delayed by hydrogen sulfide in a NAMPT/SIRT1 dependent manner. PLoS One 11:e0164710

    Article  Google Scholar 

  • Sapolsky RM (2004) Organismal stress and telomeric aging: an unexpected connection. Proc Natl Acad Sci U S A 101:17323–17324

    Article  CAS  Google Scholar 

  • Shay JW (2018) Telomeres and aging. Curr Opin Cell Biol 52:1–7

    Article  CAS  Google Scholar 

  • Shresta S, Cho W, Stump B et al (2020) FK506 induces lung lymphatic endothelial cell senescence and downregulates LYVE-1 expression, with associated decreased hyaluronan uptake. Mol Med 26:1–12

    Google Scholar 

  • Stefanou N, Papanikolaou V, Furukawa Y et al (2010) Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase. BMC Cancer 10:442

    Article  Google Scholar 

  • Theimer CA, Feigon J (2006) Structure and function of telomerase RNA. Curr Opin Struct Biol 16:307–318

    Article  CAS  Google Scholar 

  • Tichon A, Eitan E, Kurkalli BG et al (2013) Oxidative stress protection by novel telomerase activators in mesenchymal stem cells derived from healthy and diseased individuals. Curr Mol Med 13:1010–1022

    Article  CAS  Google Scholar 

  • Tracy EP, Rowe G, Toro LN (2020) Telomerase reverse transcriptase mediates restoration of functional vasodilation in isolated coronary microvessels of aged female rats. FASEB J 34:1–1

    Article  Google Scholar 

  • Tsoukalas D, Buga AM, Docea AO et al (2021) Reversal of brain aging by targeting telomerase: a nutraceutical approach. Int J Mol Med 48:199

    Article  CAS  Google Scholar 

  • Uchiumi F, Watanabe T, Hasegawa S et al (2011) The effect of resveratrol on the Werner syndrome RecQ helicase gene and telomerase activity. Curr Aging Sci 4:1–7

    Article  CAS  Google Scholar 

  • Uddin MJ, Farjana M, Moni A et al (2021) Prospective pharmacological potential of resveratrol in delaying kidney aging. Int J Mol Sci 22:8258

    Article  CAS  Google Scholar 

  • Ullah M, Sun Z (2019) Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol A Biol Sci Med Sci 74:1396–1407

    Article  CAS  Google Scholar 

  • Voglauer R, Chang MWF, Dampier B et al (2006) SNEV overexpression extends the life span of human endothelial cells. Exp Cell Res 312:746–759

    Article  CAS  Google Scholar 

  • Wang XB, Zhu L, Huang J et al (2011) Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin Med J 124:4310–4315

    CAS  Google Scholar 

  • Wyatt HDM, West SC, Beattie TL (2010) In TERT preting telomerase structure and function. Nucleic Acids Res 38:5609–5622

    Article  CAS  Google Scholar 

  • Xia L, Wang XX, Hu XS et al (2008) Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br J Pharmacol 155:387–394

    Article  CAS  Google Scholar 

  • Yao Y, Fernandez ML (2017) Beneficial effects of telomerase activator (TA-65) against chronic disease. EC Nutr 6:176–183

    Google Scholar 

  • Yeh SJ, Lin JF, Chen BS (2021) Multiple-molecule drug design based on systems biology approaches and deep neural network to mitigate human skin aging. Molecules 26:3178

    Article  CAS  Google Scholar 

  • Yu RA, Chen HJ, He LF et al (2009) Telomerase activity and telomerase reverse transcriptase expression induced by selenium in rat hepatocytes. Biomed Environ Sci 22:311–317

    Article  CAS  Google Scholar 

  • Yu P, Shen X, Yang W et al (2018a) ZEB1 stimulates breast cancer growth by up-regulating hTERT expression. Biochem Biophys Res Commun 495:2505–2511

    Article  CAS  Google Scholar 

  • Yu Y, Zhou L, Yang Y et al (2018b) Cycloastragenol: an exciting novel candidate for age-associated diseases. Exp Ther Med 16:2175–2182

    Google Scholar 

  • Yung LY, Lam WS, Ho MKC et al (2012) Astragaloside IV and cycloastragenol stimulate the phosphorylation of extracellular signal-regulated protein kinase in multiple cell types. Planta Med 78:115–121

    Article  CAS  Google Scholar 

  • Zaug AJ, Podell ER, Cech TR (2008) Mutation in TERT separates processivity from anchor-site function. Nat Struct Mol Biol 15:870–872

    Article  CAS  Google Scholar 

  • Zhu H, Belcher M, Van Der Harst P (2011) Healthy aging and disease: role for telomere biology? Clin Sci (Lond) 120(4207):440

    Google Scholar 

  • Zhu H, Guo D, Li K et al (2012) Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes 36:805–809

    Article  CAS  Google Scholar 

  • Zhu Y, Liu X, Ding X et al (2019) Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 20:1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Aydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydin, Y., Orta-Yilmaz, B. (2023). The Role of Telomerase Activators in Antiaging Strategies and their Clinical Potential. In: Rizvi, S.I. (eds) Emerging Anti-Aging Strategies. Springer, Singapore. https://doi.org/10.1007/978-981-19-7443-4_12

Download citation

Publish with us

Policies and ethics