Skip to main content

Animal Inflammation-Based Models of Neuropsychiatric Disorders

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1411)

Abstract

Mounting evidence links psychiatric disorders to central and systemic inflammation. Experimental (animal) models of psychiatric disorders are important tools for translational biopsychiatry research and CNS drug discovery. Current experimental models, most typically involving rodents, continue to reveal shared fundamental pathological pathways and biomarkers underlying the pathogenetic link between brain illnesses and neuroinflammation. Recent data also show that various proinflammatory factors can alter brain neurochemistry, modulating the levels of neurohormones and neurotrophins in neurons and microglia. The role of “active” glia in releasing a wide range of proinflammatory cytokines also implicates glial cells in various psychiatric disorders. Here, we discuss recent animal inflammation-related models of psychiatric disorders, focusing on their translational perspectives and the use of some novel promising model organisms (zebrafish), to better understand the evolutionally conservative role of inflammation in neuropsychiatric conditions.

Keywords

  • Animal models
  • Neuroinflammation
  • Neurodegeneration
  • Rodents
  • Zebrafish
  • Model organisms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet. 1997;349(9064):1498–504.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Insel TR, Charney DS. Research on major depression: strategies and priorities. JAMA. 2003;289(23):3167–8.

    CrossRef  PubMed  Google Scholar 

  3. Rapaport MH, et al. Quality-of-life impairment in depressive and anxiety disorders. Am J Psychiatr. 2005;162(6):1171–8.

    CrossRef  PubMed  Google Scholar 

  4. Stein MB, et al. Functional impact and health utility of anxiety disorders in primary care outpatients. Med Care. 2005;43:1164–70.

    CrossRef  PubMed  Google Scholar 

  5. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiat. 2015;72(4):334–41.

    CrossRef  Google Scholar 

  6. Réus GZ, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141–54.

    CrossRef  PubMed  Google Scholar 

  7. Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):57–67.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Najjar S, et al. Neuroinflammation and psychiatric illness. J Neuroinflammation. 2013;10(1):1–24.

    CrossRef  Google Scholar 

  9. Modabbernia A, et al. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry. 2013;74(1):15–25.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Dargél AA, et al. C-reactive protein alterations in bipolar disorder: a meta-analysis. J Clin Psychiatry. 2015;76(2):3919.

    CrossRef  Google Scholar 

  11. Köhler CA, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87.

    CrossRef  PubMed  Google Scholar 

  12. Inoshita M, et al. A significant causal association between C-reactive protein levels and schizophrenia. Sci Rep. 2016;6(1):1–8.

    CrossRef  Google Scholar 

  13. Goldsmith D, Rapaport M, Miller B. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150(3):736–44.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Miller BJ, et al. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khandaker GM, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. do Prado CH, et al. Reduced regulatory T cells are associated with higher levels of Th1/TH17 cytokines and activated MAPK in type 1 bipolar disorder. Psychoneuroendocrinology. 2013;38(5):667–76.

    CrossRef  PubMed  Google Scholar 

  18. Barbosa IG, et al. Monocyte and lymphocyte activation in bipolar disorder: a new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol. 2015;18(1):pyu021.

    CrossRef  Google Scholar 

  19. Dantzer R, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison NA, et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66(5):407–14.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Eisenberger NI, et al. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010;68(8):748–54.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37(1):137–62.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Cattaneo A, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38(3):377–85.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Kalueff A, Wheaton M, Murphy D. What's wrong with my mouse model?: advances and strategies in animal modeling of anxiety and depression. Behav Brain Res. 2007;179(1):1–18.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Crawley JN. What’s wrong with my mouse?: behavioral phenotyping of transgenic and knockout mice. Hoboken: John Wiley & Sons; 2007.

    CrossRef  Google Scholar 

  26. Wieck A, Andersen SL, Brenhouse HC. Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun. 2013;28:218–26.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Mutlu O, et al. Effects of fluoxetine, tianeptine and olanzapine on unpredictable chronic mild stress-induced depression-like behavior in mice. Life Sci. 2012;91(25–26):1252–62.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Hanke M, et al. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress. Brain Behav Immun. 2012;26(7):1150–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carboni L, et al. Early-life stress and antidepressants modulate peripheral biomarkers in a gene–environment rat model of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34(6):1037–48.

    CrossRef  CAS  Google Scholar 

  30. Yuan N, et al. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl Psychiatry. 2019;9(1):1–13.

    CrossRef  Google Scholar 

  31. Furtado M, Katzman MA. Examining the role of neuroinflammation in major depression. Psychiatry Res. 2015;229(1–2):27–36.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Lotrich FE. Inflammatory cytokine-associated depression. Brain Res. 2015;1617:113–25.

    CrossRef  CAS  PubMed  Google Scholar 

  34. de Araujo Boleti AP, et al. Neuroinflammation: an overview of neurodegenerative and metabolic diseases and of biotechnological studies. Neurochem Int. 2020;136:104714.

    CrossRef  PubMed  Google Scholar 

  35. Ma L, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discovery. 2017;12(10):995–1009.

    CrossRef  CAS  Google Scholar 

  36. Sellgren CM, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22(3):374–85.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang M, Zhang L, Gage FH. Microglia, complement and schizophrenia. Nat Neurosci. 2019;22(3):333–4.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Lee J-S, et al. Antidepressant-like activity of myelophil via attenuation of microglial-mediated neuroinflammation in mice undergoing unpredictable chronic mild stress. Front Pharmacol. 2019;10:683.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shintani F, et al. Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J Neurosci. 1993;13(8):3574–81.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Paiva VN, et al. Prostaglandins mediate depressive-like behaviour induced by endotoxin in mice. Behav Brain Res. 2010;215(1):146–51.

    CrossRef  PubMed  Google Scholar 

  41. Norden DM, et al. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. 2016;64(2):300–16.

    CrossRef  PubMed  Google Scholar 

  42. Enayati M, et al. Maternal infection during late pregnancy increases anxiety—and depression-like behaviors with increasing age in male offspring. Brain Res Bull. 2012;87(2–3):295–302.

    CrossRef  PubMed  Google Scholar 

  43. Christian LM, et al. Depressive symptoms are associated with elevated serum proinflammatory cytokines among pregnant women. Brain Behav Immun. 2009;23(6):750–4.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hodes GE, et al. Neuroimmune mechanisms of depression. Nat Neurosci. 2015;18(10):1386–93.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kempuraj D, et al. Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine. 2016;1(1):1003.

    PubMed  PubMed Central  Google Scholar 

  46. Couch Y, et al. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun. 2013;29:136–46.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Zheng ZH, et al. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun. 2021;91:505–18.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Gomes JAS, et al. High-refined carbohydrate diet consumption induces neuroinflammation and anxiety-like behavior in mice. J Nutr Biochem. 2020;77:108317.

    CrossRef  CAS  PubMed  Google Scholar 

  49. Wang YL, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation. 2018;15(1):21.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Zakaria R, et al. Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer's disease. Physiol Res. 2017;66(4):553–65.

    CrossRef  CAS  PubMed  Google Scholar 

  51. Hou Y, et al. NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING. Proc Natl Acad Sci U S A. 2021;118(37):e2011226118.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  52. Edition F. Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc. 2013;21:591–643.

    Google Scholar 

  53. Atalar EG, Uzbay T, Karakas S. Modeling symptoms of attention-deficit hyperactivity disorder in a rat model of fetal alcohol syndrome. Alcohol Alcohol. 2016;51(6):684–90.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Rojas-Mayorquin AE, Padilla-Velarde E, Ortuno-Sahagun D. Prenatal alcohol exposure in rodents as a promising model for the study of ADHD molecular basis. Front Neurosci. 2016;10:565.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Leth-Steensen C, Elbaz ZK, Douglas VI. Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol. 2000;104(2):167–90.

    CrossRef  CAS  Google Scholar 

  56. Hausknecht KA, et al. Prenatal alcohol exposure causes attention deficits in male rats. Behav Neurosci. 2005;119(1):302.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Gilbertson RJ, Barron S. Neonatal ethanol and nicotine exposure causes locomotor activity changes in preweanling animals. Pharmacol Biochem Behav. 2005;81(1):54–64.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Girard T, et al. Early postnatal ethanol exposure has long-term effects on the performance of male rats in a delayed matching-to-place task in the Morris water maze. Alcohol Clin Exp Res. 2000;24(3):300–6.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Reyes E, Wolfe J, Savage DD. The effects of prenatal alcohol exposure on radial arm maze performance in adult rats. Physiol Behav. 1989;46(1):45–8.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Nagahara AH, Handa RJ. Fetal alcohol exposure produces delay-dependent memory deficits in juvenile and adult rats. Alcohol Clin Exp Res. 1997;21(4):710–5.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Sharma N, et al. Papaverine ameliorates prenatal alcohol-induced experimental attention deficit hyperactivity disorder by regulating neuronal function, inflammation, and oxidative stress. Int J Dev Neurosci. 2021;81(1):71–81.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Kelley KW, Kent S. The legacy of sickness behaviors. Front Psychiatry. 2020;11:607269.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  63. Maes M, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012;10(1):66.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lasselin J, et al. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev. 2020;115:15–24.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Anforth HR, et al. Biological activity and brain actions of recombinant rat interleukin-1alpha and interleukin-1beta. Eur Cytokine Netw. 1998;9(3):279–88.

    CAS  PubMed  Google Scholar 

  66. Meshalkina DA, et al. Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim. 2017;46(10):378–87.

    CrossRef  Google Scholar 

  67. Cofer ZC, Matthews RP. Zebrafish models of biliary atresia and other infantile cholestatic diseases. Curr Pathobiol Rep. 2014;2(2):75–83.

    CrossRef  Google Scholar 

  68. Gong Z, et al. The zebrafish model for liver carcinogenesis. In: Molecular genetics of liver neoplasia. Cham: Springer; 2010. p. 197–218.

    Google Scholar 

  69. Aleström P, Winther-Larsen HC. Zebrafish offer aquaculture research their services. In: Genomics in aquaculture. London: Elsevier; 2016. p. 165–94.

    Google Scholar 

  70. Geisler R, et al. Archiving of zebrafish lines can reduce animal experiments in biomedical research. EMBO Rep. 2017;18(1):1–2.

    CrossRef  CAS  PubMed  Google Scholar 

  71. Hudson-Shore M. Statistics of scientific procedures on living animals Great Britain 2015—highlighting an ongoing upward trend in animal use and missed opportunities for reduction. Altern Lab Anim. 2016;44(6):569–80.

    CrossRef  PubMed  Google Scholar 

  72. Stewart AM, et al. Molecular psychiatry of zebrafish. Mol Psychiatry. 2015;20(1):2.

    CrossRef  CAS  PubMed  Google Scholar 

  73. Stewart AM, et al. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37(5):264–78.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gerlai R. Using zebrafish to unravel the genetics of complex brain disorders. Curr Top Behav Neurosci. 2011;12:3–24.

    CrossRef  Google Scholar 

  75. Le Bras A. Enhancing gene editing in zebrafish. Lab Animal. 2019;48:234.

    CrossRef  Google Scholar 

  76. Howe K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grunwald DJ, Eisen JS. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet. 2002;3(9):717–24.

    CrossRef  CAS  PubMed  Google Scholar 

  78. Kalueff AV, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 2013;10(1):70–86.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  79. Mojzesz M, et al. Tilapia Lake virus-induced neuroinflammation in zebrafish: microglia activation and sickness behavior. Front Immunol. 2021;12:760882.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paudel YN, Othman I, Shaikh MF. Anti-high mobility group box-1 monoclonal antibody attenuates seizure-induced cognitive decline by suppressing neuroinflammation in an adult zebrafish model. Front Pharmacol. 2020;11:613009.

    CrossRef  CAS  PubMed  Google Scholar 

  81. Song C, et al. Modeling consequences of prolonged strong unpredictable stress in zebrafish: complex effects on behavior and physiology. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:384–94.

    CrossRef  Google Scholar 

  82. Pereira TC, Campos MM, Bogo MR. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol. 2016;36(7):876–85.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Demin KA, et al. Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Sci Rep. 2020;10(1):1–20.

    CrossRef  Google Scholar 

  84. Yang L, et al. Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behav Brain Res. 2020;389:112644.

    CrossRef  CAS  PubMed  Google Scholar 

  85. Demin KA, et al. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress. 2021;24(1):1–18.

    CrossRef  CAS  PubMed  Google Scholar 

  86. Demin KA, et al. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. J Neurosci Methods. 2020;337:108637.

    CrossRef  CAS  PubMed  Google Scholar 

  87. Marcon M, et al. Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology. 2016;233(21):3815–24.

    CrossRef  CAS  PubMed  Google Scholar 

  88. Zabegalov KN, et al. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res Bull. 2021;166:44–53.

    CrossRef  CAS  PubMed  Google Scholar 

  89. Becker CG, et al. L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci. 2004;24(36):7837–42.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dias DO, Göritz C. Fibrotic scarring following lesions to the central nervous system. Matrix Biol. 2018;68:561–70.

    CrossRef  PubMed  Google Scholar 

  91. Reimer MM, et al. Motor neuron regeneration in adult zebrafish. J Neurosci. 2008;28(34):8510–6.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  92. Saleem S, Kannan RR. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 2018;4(1):1–13.

    CrossRef  Google Scholar 

  93. Kishimoto N, Shimizu K, Sawamoto K. Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech. 2012;5(2):200–9.

    CrossRef  CAS  PubMed  Google Scholar 

  94. Cacialli P, Palladino A, Lucini C. Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish. Neural Regen Res. 2018;13(6):941.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  95. Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol. 2012;946:253–75.

    CrossRef  CAS  PubMed  Google Scholar 

  96. Zanandrea R, Bonan CD, Campos MM. Zebrafish as a model for inflammation and drug discovery. Drug Discov Today. 2020;25(12):2201–11.

    CrossRef  CAS  PubMed  Google Scholar 

  97. Xie Y, Meijer AH, Schaaf MJM. Modeling inflammation in zebrafish for the development of anti-inflammatory drugs. Front Cell Dev Biol. 2021;8:620984.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  98. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2(Suppl 2)):136–53.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chiu C-C, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods. 2016;272:38–49.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  100. Au-Crilly S, et al. Using zebrafish larvae to study the pathological consequences of hemorrhagic stroke. JoVE. 2019;148:e59716.

    Google Scholar 

  101. Crilly S, et al. Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Res. 2018;7:1617.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kyritsis N, et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science. 2012;338(6112):1353–6.

    CrossRef  CAS  PubMed  Google Scholar 

  103. Kanagaraj P, et al. Microglia stimulate zebrafish brain repair via a specific inflammatory cascade. bioRxiv. 2020; p. 2020.10.08.330662.

    Google Scholar 

  104. Lee S-B, et al. Analysis of zebrafish (Danio rerio) behavior in response to bacterial infection using a self-organizing map. BMC Vet Res. 2015;11(1):269.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  105. Paudel YN, Othman I, Shaikh MF. Anti-high mobility group Box-1 monoclonal antibody attenuates seizure-induced cognitive decline by suppressing neuroinflammation in an adult zebrafish model. Front Pharmacol. 2021;11:613009.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  106. Lee Y, et al. Hypoxia-induced neuroinflammation and learning-memory impairments in adult zebrafish are suppressed by glucosamine. Mol Neurobiol. 2018;55(11):8738–53.

    CrossRef  CAS  PubMed  Google Scholar 

  107. Paudel YN, et al. Pilocarpine induced behavioral and biochemical alterations in chronic seizure-like condition in adult zebrafish. Int J Mol Sci. 2020;21(7):2492.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  108. Forn-Cuní G, et al. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep. 2017;7(1):41905.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  109. Hong J-M, et al. Anti-Inflammatory effects of Antarctic Lichen Umbilicaria antarctica methanol extract in lipopolysaccharide-stimulated RAW 264.7 macrophage cells and zebrafish model. Biomed Res Int. 2021;2021:8812090.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  110. Lefebvre KA, et al. Gene expression profiles in zebrafish brain after acute exposure to domoic acid at symptomatic and asymptomatic doses. Toxicol Sci. 2009;107(1):65–77.

    CrossRef  CAS  PubMed  Google Scholar 

  111. Kirsten K, et al. Acute and chronic stress differently alter the expression of cytokine and neuronal markers genes in zebrafish brain. Stress. 2021;24(1):107–12.

    CrossRef  CAS  PubMed  Google Scholar 

  112. Boswell M, et al. Deconvoluting wavelengths leading to fluorescent light induced inflammation and cellular stress in Zebrafish (Danio rerio). Sci Rep. 2020;10(1):3321.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  113. de Abreu MS, et al. Towards modeling anhedonia and its treatment in zebrafish. Int J Neuropsychopharmacol. 2021;25(4):293–306.

    CrossRef  PubMed Central  Google Scholar 

  114. Dunn AJ, Swiergiel AH. Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav. 2005;81(3):688–93.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zeng J, et al. Interferon-α exacerbates neuropsychiatric phenotypes in lupus-prone mice. Arthritis Res Ther. 2019;21(1):205.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  116. Demin KA, et al. Modulation of behavioral and neurochemical responses of adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in the prolonged chronic unpredictable stress model. Sci Rep. 2021;11(1):14289.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demin, K.A. et al. (2023). Animal Inflammation-Based Models of Neuropsychiatric Disorders. In: Kim, YK. (eds) Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1411. Springer, Singapore. https://doi.org/10.1007/978-981-19-7376-5_5

Download citation