Skip to main content

Therapeutic Applications: Photodynamic Therapy Using Porphyrin Compounds

  • Chapter
  • First Online:
Fluorescence-Guided Surgery
  • 149 Accesses

Abstract

As a result of recent advances in endoscopes and optical fibers, optical engineering has been introduced to medical treatment in these years. Photodynamic therapy (PDT) is a promising treatment method that irradiates a tumor with a highly tumor-accumulating photosensitive agent and a laser with a specific wavelength and shows a cell-killing effect only on tumor cells with high drug concentration. It has already been applied clinically in the fields of pulmonary and digestive surgery, neurosurgery, ophthalmology, dermatology, and urology. As described in other chapters, photodynamic diagnosis (PDD), which is a method to diagnose the localization of tumors by irradiating biological tissues with light and detecting the fluorescence generated by photosensitive agents accumulated in tumors, is also being actively studied and applied clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilf R, Warne NW, Smail DB, et al. Photodynamic inactivation of selected intracellular enzymes by hematoporphyrin derivatives and their relationship to tumor cell viability in vitro. Cancer Lett. 1984;24:165–72.

    Article  CAS  PubMed  Google Scholar 

  2. Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as a cytotoxic agent in the photoinactivation of a murine tumor. Cancer Res. 1976;36:2326–9.

    CAS  PubMed  Google Scholar 

  3. Fingar VH, Siegel KA, Wieman TJ, et al. The effects of thromboxane inhibitors on the microvascular and tumor response to photodynamic therapy. Photochem Photochem Photobiol. 1993;58:393–9.

    Article  CAS  PubMed  Google Scholar 

  4. McMahon KS, Wieman TJ, Moore PH, et al. Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res. 1994;54:5374–9.

    CAS  PubMed  Google Scholar 

  5. Gilissen MJ, van de Merbel-de Wit LE, Star WM, et al. Effect of photodynamic therapy on the endothelium-dependent relaxation of isolated rat aortas. Cancer Res. 1993;53:2548–52.

    CAS  PubMed  Google Scholar 

  6. de Vree WJ, Essers MC, Koster JF, et al. Role of interleukin 1 and granulocyte colony-stimulating factor in Photofrin-based photodynamic therapy of rat rhabdomyosarcoma tumors. Cancer Res. 1997;57:2555–8.

    PubMed  Google Scholar 

  7. Evans S, Matthews W, Perry R, et al. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. J Natl Cancer Inst. 1990;82:34–9.

    Article  CAS  PubMed  Google Scholar 

  8. Korbelik M. Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg. 1996;14:329–34.

    Article  CAS  PubMed  Google Scholar 

  9. Nanashima A, Nagayasu T. Current status of photodynamic therapy in digestive tract carcinoma in Japan. Int J Mol Sci. 2015;33:117–21.

    Google Scholar 

  10. Shimoyama Y, Kuribayashi S, Hosaka H, et al. Indications for gastric cancer PDT and the possibility of expanding the indications. J Res Med. 2015;16:3434–40.

    Google Scholar 

  11. Furuse K, Fukuoka M, Kato H, et al. A prospective phase II study on photodynamic therapy with Photofrin II for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J Clin Oncol. 1993;11:1852–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kato H, Furukawa K, Sato M, et al. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42:103–11.

    Article  PubMed  Google Scholar 

  13. Usuda J, Ichinose S, Ishizumi T, et al. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res. 2010;16:2198–204.

    Article  CAS  PubMed  Google Scholar 

  14. Yano T, Muto M, Minashi K, et al. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal. Int J Cancer. 2012;131:1228–34.

    Article  CAS  PubMed  Google Scholar 

  15. Yano T, Kasai H, Horimatsu T, et al. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget. 2017;8:22135–44.

    Article  PubMed  Google Scholar 

  16. Amanuma Y, Horimatsu T, Ohashi S, et al. Association of local complete response with prognosis after salvage photodynamic therapy for esophageal squamous cell carcinoma. Dige Endosc. 2021;33:355–63.

    Article  Google Scholar 

  17. Muragaki Y, Akimoto J, Maruyama T, et al. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser. J Neurosurg. 2013;119:845–52.

    Article  CAS  PubMed  Google Scholar 

  18. Stepp H, Beck T, Pongratz T, et al. ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol. 2007;26:157–64.

    Article  CAS  PubMed  Google Scholar 

  19. Tetard MC, Vermandel M, Mordon S, et al. Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Photodiagn Photodyn Ther. 2014;11:319–30.

    Article  CAS  Google Scholar 

  20. Nanashima A, Abo T, Nonaka T, et al. Photodynamic therapy using talaporfin sodium (Leserphyrin®) for bile ductcarcinoma: a preliminary clinical trial. Anticancer Res. 2012;32:4931–8.

    CAS  PubMed  Google Scholar 

  21. Suzuki S, Inaba K, Yokoi Y, et al. Photodynamic therapy for malignant biliary obstruction: a case series. Endoscopy. 2004;36:83–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ortner ME, Caca K, Berr F, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology. 2003;125:1355–63.

    Article  PubMed  Google Scholar 

  23. Berr F, Wiedmann M, Tannapfel A, et al. Photodynamic therapy for advanced bile duct cancer: evidence for improved palliation and extended survival. Hepatology. 2000;31:291–8.

    Article  CAS  PubMed  Google Scholar 

  24. Nonaka Y, Nanashima A, Nonaka T, et al. Synergic effect of photodynamic therapy using talaporfin sodium with conventional anticancer chemotherapy for the. J Surg Res. 2013;181:234–41.

    Article  CAS  PubMed  Google Scholar 

  25. Ramsay D, Stevenson H, Jerjes W. From basic mechanisms to clinical research: photodynamic therapy applications in head and neck malignancies and vascular anomalies. J Clin Med. 2021. https://doi.org/10.3390/jcm10194404.

  26. Bozzini G, Colin P, Betrouni N, et al. Photodynamic therapy in urology: what can we do now and where are we heading? Photodiagn Photodyn Ther. 2012;9:261–73.

    Article  CAS  Google Scholar 

  27. Vrouenraets MB, Visser GW, Loup C, et al. Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: a new possibility for use in photodynamic therapy. Int J Cancer. 2000;88:108–14.

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka M, Kataoka H, Yano S, et al. Antitumor effects in gastrointestinal stromal tumors using photodynamic therapy with a novel glucose-conjugated chlorin. Mol Cancer Ther. 2014;13:767–75.

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto J, Suzuki K, Yasuda M, et al. Photodynamic therapy of human biliary cancer cell line using a combination of phosphorus porphyrins and light emitting diode. Med Chem. 2017;25:6536–41.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Nanashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamada, T., Nanashima, A. (2023). Therapeutic Applications: Photodynamic Therapy Using Porphyrin Compounds. In: Ishizawa, T. (eds) Fluorescence-Guided Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-7372-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7372-7_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7371-0

  • Online ISBN: 978-981-19-7372-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics