Skip to main content

Bladder Cancer

  • Chapter
  • First Online:
Fluorescence-Guided Surgery

Abstract

Since more than 100 years ago, photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using photosensitizers and special light sources have been focused on for the diagnosis and treatment of cancerous lesions. Specifically, porphyrin derivatives and lasers and light irradiation devices such as argon lasers have been developed in basic and clinical studies. In recent years, 5-aminolevulinic acid (5-ALA), a natural amino acid found in animals and plants, has been introduced as a safe and effective photosensitizer, evoking interest in PDD and PDT again. In Japan, 5-ALA was approved in 2013 as an intraoperative diagnostic agent for visualization of tumor tissue during resection for malignant glioma, followed by approval in 2017 for identification of non-muscle-invasive bladder tumor during transurethral resection. Currently, a physician-led clinical trial is underway to evaluate the efficacy and safety of PDD using 5-ALA during staging laparoscopy in patients with advanced gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babjuk M, Oosterlinck W, Sylvester R, et al.; European Association of Urology (EAU). EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: European Association of Urology (EAU). Eur Urol. 2008;54:303–14.

    Google Scholar 

  2. Brausi M, Collette L, Kurth K, et al.; EORTC Genito-Urinary Tract Cancer Collaborative Group. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol. 2002;41:523–31.

    Google Scholar 

  3. Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer Using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49:466–75.

    Article  PubMed  Google Scholar 

  4. Raab O. Ueber die Wirkung fluorescierender Stoffe und Infusorien. ZBiol. 1900;39:524–6.

    CAS  Google Scholar 

  5. Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol. 1960;82:508–16.

    Article  CAS  PubMed  Google Scholar 

  6. Dougherty TJ, Kaufman JE, Goldfarb A, et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978;38:2628–35.

    CAS  PubMed  Google Scholar 

  7. Dougherty TJ, Potter WR, Weishaupt KR. The structure of the active component of the hematoporphyrin derivative. In: Porphyrin localization and treatment of tumors. New York: Alan R. Liss Inc.; 1984. p. 301–14.

    Google Scholar 

  8. Hayata Y, Kato H, Noguchi M, et al. Photodiagnostic treatment of cancer using excimer-diode laser. BME. 1987;1:532–5.

    Google Scholar 

  9. Rall DP, Loo TL, Lane MG. Appearance and persistence of fluorescent material in tumor tissue after tetracycline administration. J National Cancer Institute. 1957;19:79–86.

    CAS  Google Scholar 

  10. Whitmore WF Jr, Bush IM, Esquivel E. Tetracycline ultraviolet fluorescence in bladder carcinoma. Cancer. 1964;17:1528–32.

    Article  PubMed  Google Scholar 

  11. Kelly JF, Snell ME. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol. 1976;115:150–1.

    Article  CAS  PubMed  Google Scholar 

  12. Hisazumi H, Misaki T, Miyoshi N. Photoradiation therapy of bladder tumors. J Urol. 1983;130:685–7.

    Article  CAS  PubMed  Google Scholar 

  13. Malik Z, Lugaci H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer. 1987;56:589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990;6:143–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kriegmair M, Waidelich R, Baumgartner R, et al. Photodynamic therapy of superficial bladder cancer: an alternative to radical cystectomy? Urologe A. 1990;33:276–80.

    Google Scholar 

  16. Inoue K, Takashi K, Kamada M, et al. Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX-accumulation in human urothelial carcinomas. Pathobiology. 2009;76:303–14.

    Article  CAS  PubMed  Google Scholar 

  17. Steinbach P, Weingandt H, Baumgartner R, et al. Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5- aminolevulinic acid. Photochem Photobiol. 1995;62:887–95.

    Article  CAS  PubMed  Google Scholar 

  18. Steinbach P, Kriegmair M, Baumgartner R, et al. Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology. 1994;44:836–41.

    Article  PubMed  Google Scholar 

  19. Ishizuka M, Abe F, Sano Y, et al. Novel development of 5-aminolevulinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol. 2011;11:358–65.

    Article  CAS  PubMed  Google Scholar 

  20. Inoue K, Fukuhara H, Shimamoto T, et al. Comparison between intravesical and oral administration of 5-aminolevulinic acid in the clinical benefit of photodynamic diagnosis for non-muscle invasive bladder cancer. Cancer. 2012;118:1062–74.

    Article  CAS  PubMed  Google Scholar 

  21. Inoue K, Anai S, Fujimoto K, et al. Oral 5-aminolevulinic acid mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle- invasive bladder cancer: a randomized, double-blind, multicentre phase II/III study. Photodiagn Photodyn Ther. 2015;12:193–200.

    Article  CAS  Google Scholar 

  22. AlaglioⓇ Granule Formulation Batch 1.5g Aminolevulinic Acid Hydrochloride Granules Appropriate Use Guide, November 2017.

    Google Scholar 

  23. AlaglioⓇ Granule Formulation Batch 1.5g Aminolevulinic Acid Hydrochloride Granule Adverse Reactions, May 2019.

    Google Scholar 

  24. The Japanese Urological Association. Guidelines for the treatment of bladder cancer. Medical Library Publishing; 2019. edition.

    Google Scholar 

  25. EAU Oncology Guidelines. https://uroweb.org/individual-guidelines/oncology-guidelines/.

  26. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer. AUA/SUO Joint Guideline; 2016. https://www.auanet.org/guidelines/bladder-cancer-non-muscle-invasive-guideline.

  27. Mowatt G, N'Dow J, Vale L, et al.; Aberdeen Technology Assessment Review (TAR) Group. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: systematic review and meta-analysis. Int J Technol Assess Health Care. 2011;27: 3–10.

    Google Scholar 

  28. Chen C, Huang H, Zhao Y, et al. Diagnostic performance of image technique based transurethral resection for non-muscle invasive bladder cancer: a systematic review and diagnostic meta-analysis. BMJ Open. 2019;9:e028173.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kausch I, Sommerauer M, Montorsi F, et al. Photodynamic diagnosis in non-muscle- invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010;57:595–606.

    Article  PubMed  Google Scholar 

  30. Rink M, Babjuk M, Catto JW, et al. Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle- invasive bladder cancer: a critical review of the current literature. Eur Urol. 2013;64:624–38.

    Article  PubMed  Google Scholar 

  31. Burger M, Grossman HB, Droller M, et al. Photodynamic diagnosis of non-muscle- invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64:846–54.

    Article  PubMed  Google Scholar 

  32. Di Stasi SM, De Carlo F, Pagliarulo V, et al. Hexaminolevulinate hydrochloride in the detection of nonmuscle invasive cancer of the bladder. Ther Adv Urol. 2015;7:339–50.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shen P, Yang J, Wei W, et al. Effects of fluorescent light-guided transurethral resection on non-muscle-invasive bladder cancer: a systematic review and meta-analysis. BJU Int. 2012;110:E209–15.

    Article  PubMed  Google Scholar 

  34. Yuan H, Qiu J, Liu L, et al. Therapeutic outcome of fluorescence cystoscopy guided transurethral resection in patients with non-muscle invasive bladder cancer: a meta-analysis of randomized controlled trials. PLoS One. 2013;8:e74142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rolevich AI, Evmenenko AA. A systematic review and meta-analysis to assess the recurrence-free survival in non-muscle invasive bladder cancer after transurethral resection guided by 5-aminolevulinic acid-induced photodynamic diagnosis compared with white-light transurethral resection. Urologiia. 2016;4:137–46.

    Google Scholar 

  36. Chou R, Selph S, Buckley DI, et al. Comparative effectiveness of fluorescent versus white light cystoscopy for initial diagnosis or surveillance of bladder cancer on clinical outcomes: systematic review and meta-analysis. J Urol. 2017;197:548–58.

    Article  PubMed  Google Scholar 

  37. Gakis G, Fahmyb O. Systematic review and meta-analysis on the impact of hexaminolevulinate- versus white-light guided transurethral bladder tumor resection on progression in non-muscle invasive bladder cancer. Bladder Cancer. 2016;2:293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Osman E, Alnaib Z, Kumar N. Photodynamic diagnosis in upper urinary tract urothelial carcinoma: a systematic review. Arab J Urol. 2017;15:100–1097.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Inoue K, Fukuhara H, Kurabayashi A, et al. Photodynamic therapy involves anti- angiogenic mechanism and is enhanced by ferrochelatase inhibitor in urothelial carcinoma. Cancer Sci. 2013;104:765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol. 2017;24:97–101.

    Article  CAS  PubMed  Google Scholar 

  41. Lee JY, Diaz RR, Cho KS, et al. Efficacy and safety of photodynamic therapy for recurrent, high-grade nonmuscle invasive bladder cancer refractory or intolerant to bacille Calmette-Guérin immunotherapy. J Urol. 2013;190:1192–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inoue, K., Fukuhara, H., Yamamoto, S. (2023). Bladder Cancer. In: Ishizawa, T. (eds) Fluorescence-Guided Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-7372-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7372-7_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7371-0

  • Online ISBN: 978-981-19-7372-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics