Skip to main content

Nonlinear Coupled Thermal-Structural Analysis of Monolithic and Precast Concrete Corbel Beam-to-Column Connection

  • Conference paper
  • First Online:
Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 302))

Abstract

In this paper, a nonlinear coupled thermal-structural analysis is executed using ANSYS Workbench to simulate the fire performance of monolithic and precast concrete corbel beam-to-column connection at high temperatures. The monolithic models, namely M22-S and M600-S, represent the testing temperatures of 22 ℃ and 600 ℃. The precast concrete corbel models, namely C22-S and C400-S, represent the testing temperatures of 22 ℃ and 400 ℃. The models are simulated to failure under incremental point loads at the end of the beam that produced hogging moments to the connections. The response of the models is validated against the load-deflection curves and toughness of connections from the previous experimental test. The relative connection performance at ambient and high temperatures is evaluated and discussed. The load-deflection curves for connections M22, M600, and C22 show a good agreement between the simulation and experimental results. The load-deflection curves are reduced with increasing temperatures. The toughness for connections M22, M600, and C22 (simulation and experimental) has verified the accuracy and applicability of the proposed simulation model. The toughness results show that the connection at ambient temperature (M22 and C22) has higher fracture resistance than at high temperatures (M600 and C400). The validation result of nonlinear coupled thermal-structural analysis executed using ANSYS Workbench gives good efficiency for predicting the fire performance of monolithic and precast concrete corbel beam-to-column connection at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

The authors acknowledge the financial support from Universiti Kebangsaan Malaysia through Research University Grant (grant no. DIP-2019–002 and MUTIARA-A165894) and laboratory facilities provided by the Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roszilah Hamid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radzi, N.A.M., Muniandy, S., Ismasafie, F.S., Hamid, R. (2023). Nonlinear Coupled Thermal-Structural Analysis of Monolithic and Precast Concrete Corbel Beam-to-Column Connection. In: Geng, G., Qian, X., Poh, L.H., Pang, S.D. (eds) Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022. Lecture Notes in Civil Engineering, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-19-7331-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7331-4_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7330-7

  • Online ISBN: 978-981-19-7331-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics