Skip to main content

Nutrient Supplementation in Diabetic Macular Edema

  • Chapter
  • First Online:
  • 275 Accesses

Abstract

International Diabetes Federation Atlas stated that diabetes mellitus (DM) affects 463 million people around the globe. It is estimated that this global burden will reach 578 million by 2030 and about 700 million by 2045. The pathophysiology of diabetic macular edema (DME) in diabetic retinopathy (DR) is an intricate process. The basis for prevention of onset of DR and its progression to advanced stages can be done by identification of modifiable risk factors and their control. The early recognition and treatment of these modifiable risk factors has played a major role in halting the development and progression of the disease. A major factor for that is the role of nutrition and diet. Understanding the role of nutrition is key for modifying and augmenting treatment, which is related to both supplementation as well as counseling, for those suffering from DME. Our knowledge of nutrition in DME is only partial and ever growing. A high degree of suspicion and a holistic view on the treatment of patients in necessary for the best possible care that can be provided to those suffering from DME.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Diabetes Federation International. IDF Diabetes Atlas Ninth edition 2019 [Internet]. Brussels: International Diabetes Federation; 2019. p. 1. http://www.idf.org/about-diabetes/facts-figures.

    Google Scholar 

  2. Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304:649–56.

    Article  CAS  Google Scholar 

  3. Hammes HP, Welp R, Kempe HP, Wagner C, Siegel E, Holl RW, et al. Risk factors for retinopathy and DME in type 2 diabetes-results from the German/Austrian DPV database. PLoS One. 2015;10:e0132492.

    Article  Google Scholar 

  4. Roy MS, Janal MN. High caloric and sodium intakes as risk factors for progression of retinopathy in type 1 diabetes mellitus. Arch Ophthalmol. 2010;128(1):33–9.

    Article  CAS  Google Scholar 

  5. Archer DB. Bowman lecture 1998. Diabetic retinopathy: some cellular, molecular and therapeutic considerations. Eye (Lond). 1999;13(4):497–523.

    Article  Google Scholar 

  6. Skrha J, Kunesova M, Hilgertova J, Weiserova H, Krizova J, Kotrlikova E. Short-term very low calorie diet reduces oxidative stress in obese type 2 diabetic patients. Physiol Res. 2005;54(1):33–9.

    Article  CAS  Google Scholar 

  7. Sumarriva K, Uppal K, Ma C, Herren DJ, Wang Y, Chocron IM, et al. Arginine and carnitine metabolites are altered in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2019;60(8):3119–26.

    Article  CAS  Google Scholar 

  8. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868–73.

    Article  CAS  Google Scholar 

  9. Sapieha P, Chen J, Stahl A, Seaward MR, Favazza TL, Juan AM, et al. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice. Nutr Diabetes. 2012;2:e36.

    Article  CAS  Google Scholar 

  10. Lottenberg AM, Afonso Mda S, Lavrador MS, Machado RM, Nakandakare ER. The role of dietary fatty acids in the pathology of metabolic syndrome. J Nutr Biochem. 2012;23(9):1027–40.

    Article  CAS  Google Scholar 

  11. Sala-Vila A, Díaz-López A, Valls-Pedret C, Cofán M, García-Layana A, Lamuela-Raventós RM, et al. Dietary marine ω-3 fatty acids and incident sight-threatening retinopathy in middle-aged and older individuals with type 2 diabetes: prospective investigation from the PREDIMED trial. JAMA Ophthalmol. 2016;134(10):1142–9.

    Article  Google Scholar 

  12. Kowluru RA, Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes. 2004;53(12):3233–8.

    Article  CAS  Google Scholar 

  13. Gebka A, Serkies-Minuth E, Raczynska D. Effect of the administration of alpha-lipoic acid on contrast sensitivity in patients with type 1 and type 2 diabetes. Mediators Inflamm. 2014;2014:131538.

    Article  Google Scholar 

  14. Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion. 2007;7:S168–74.

    Article  CAS  Google Scholar 

  15. Hamilton SJ, Chew GT, Watts GF. Coenzyme Q10 improves endothelial dysfunction in statin-treated type 2 diabetic patients. Diabetes Care. 2009;32:810–2.

    Article  Google Scholar 

  16. Roig-Revert MJ, Lleó-Pérez A, Zanón-Moreno V, Vivar-Llopis B, Marín-Montiel J, Dolz-Marco R, et al. Valencia study on diabetic retinopathy (VSDR). Enhanced oxidative stress and other potential biomarkers for retinopathy in type 2 diabetics: beneficial effects of the nutraceutic supplements. Biomed Res Int. 2015;2015:408180.

    Article  Google Scholar 

  17. Solmonson A, DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 2018;293(20):7522–30.

    Article  CAS  Google Scholar 

  18. Park S, Karunakaran U, Jeoung NH, Jeon JH, Lee IK. Physiological effect and therapeutic application of alpha lipoic acid. Curr Med Chem. 2014;21(32):3636–45.

    Article  CAS  Google Scholar 

  19. Voloboueva LA, Liu J, Suh JH, Ames BN, Miller SS. (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci. 2005;46(11):4302–10.

    Article  Google Scholar 

  20. Ansar H, Mazloom Z, Kazemi F, Hejazi N. Effect of alpha-lipoic acid on blood glucose, insulin resistance and glutathione peroxidase of type 2 diabetic patients. Saudi Med J. 2011;32(6):584–8.

    Google Scholar 

  21. Pei Y, Liu H, Yang Y, Yang Y, Jiao Y, Tay FR, et al. Biological activities and potential oral applications of N-acetylcysteine: progress and prospects. Oxid Med Cell Longev. 2018;2018:2835787.

    Article  Google Scholar 

  22. Aoyama K, Wang F, Matsumura N, Kiyonari H, Shioi G, Tanaka K, et al. Increased neuronal glutathione and neuroprotection in GTRAP3-18-deficient mice. Neurobiol Dis. 2012;45(3):973–82.

    Article  CAS  Google Scholar 

  23. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355–9.

    Article  CAS  Google Scholar 

  24. Zhu Y, Zhang XL, Zhu BF, Ding YN. Effect of antioxidant N-acetylcysteine on diabetic retinopathy and expression of VEGF and ICAM-1 from retinal blood vessels of diabetic rats. Mol Biol Rep. 2012;39(4):3727–35.

    Article  CAS  Google Scholar 

  25. Mohamed R, Sharma I, Ibrahim AS, Saleh H, Elsherbiny NM, Fulzele S, et al. Hyperhomocysteinemia alters retinal endothelial cells barrier function and angiogenic potential via activation of oxidative stress. Sci Rep. 2017;7(1):11952.

    Article  Google Scholar 

  26. Gerona G, Lopez D, Palmero M, Maneu V. Antioxidant N-acetyl-cysteine protects retinal pigmented epithelial cells from long-term hypoxia changes in gene expression. J Ocul Pharmacol Ther. 2010;26(4):309–14.

    Article  CAS  Google Scholar 

  27. Lei H, Velez G, Cui J, Samad A, Maberley D, Matsubara J, et al. Nacetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. Am J Pathol. 2010;177(1):132–40.

    Article  CAS  Google Scholar 

  28. Choline-Health Professional Fact Sheet. National Institutes of Health. 2020. https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/. Accessed 24 Feb 2020.

  29. Drews K, Rozycka A, Barlik M, Klejewski A, Kurzawinska G, Wolski H, et al. Polymorphic variants of genes involved in choline pathway and the risk of intrauterine fetal death. Ginekol Pol. 2017;88(4):205–11.

    Article  Google Scholar 

  30. Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients. 2013;5(9):3481–95.

    Article  Google Scholar 

  31. Wilcken DE, Wilcken B, Dudman NP, Tyrrell PA. Homocystinuria—the effects of betaine in the treatment of patients not responsive to pyridoxine. N Engl J Med. 1983;309(8):448–53.

    Article  CAS  Google Scholar 

  32. Morris SM. Arginine metabolism: boundaries of our knowledge. J Nutr. 2007;137:1602S–9S.

    Article  CAS  Google Scholar 

  33. Paris LP, Johnson CH, Aguilar E, Usui Y, Cho K, Hoang LT, et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics. 2016;12:15.

    Article  Google Scholar 

  34. Narayanan SP, Rojas M, Suwanpradid J, Toque HA, Caldwell RW, Caldwell RB. Arginase in retinopathy. Prog Retin Eye Res. 2013;36:260–80.

    Article  CAS  Google Scholar 

  35. Malecki MT, Undas A, Cyganek K, Mirkiewicz-Sieradzka B, Wolkow P, Osmenda G, et al. Plasma asymmetric dimethylarginine (ADMA) is associated with retinopathy in type 2 diabetes. Diabetes Care. 2007;30:2899–901.

    Article  Google Scholar 

  36. Namitha KK, Negi PS. Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr. 2010;50:728–60.

    Article  CAS  Google Scholar 

  37. Sugai M, Ohta A, Ogata Y, Nakanishi M, Ueno S, Kawata T, et al. Asymmetric dimethylarginine (ADMA) in the aqueous humor of diabetic patients. Endocr J. 2007;54:303–9.

    Article  CAS  Google Scholar 

  38. Jomova K, Valko M. Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem. 2013;70:102–10.

    Article  CAS  Google Scholar 

  39. Nakagawa K, Kiko T, Hatade K, Asai A, Kimura F, Sookwong P, et al. Development of a high-performance liquid chromatography-based assay for carotenoids in human red blood cells: application to clinical studies. Anal Biochem. 2008;381:129–34.

    Article  CAS  Google Scholar 

  40. Saini RK, Nile SH, Park SW. Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int. 2015;76:735–50.

    Article  CAS  Google Scholar 

  41. Subczynski W, Wisniewska A, Widomska J. Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes. Arch Biochem Biophys. 2010;504:61–6.

    Article  CAS  Google Scholar 

  42. Hammond BR Jr, Wooten BR, Snodderly DM. Individual variations in the spatial profile of human macular pigment. J Opt Soc Am A Opt Image Sci Vis. 1997;14:1187–96.

    Article  Google Scholar 

  43. Rutz JK, Borges CD, Zambiazi RC, da Rosa CG, da Silva MM. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chem. 2016;202:324–33.

    Article  CAS  Google Scholar 

  44. Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9:1551–8.

    Article  CAS  Google Scholar 

  45. Ames B, Shigenaga M, Hagen T. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90:7915–22.

    Article  CAS  Google Scholar 

  46. Murillo A, Fernandez M. Potential of dietary non-provitamin a carotenoids in the prevention and treatment of diabetic microvascular complications. Adv Nutr. 2016;7:14–24.

    Article  CAS  Google Scholar 

  47. Scanlon G, Loughman J, Farrell D, McCartney D. A review of the putative causal mechanisms associated with lower macular pigment in diabetes mellitus. Nutr Res Rev. 2019;32:247–64.

    Article  CAS  Google Scholar 

  48. Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, et al. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia. 2010;53:971–9.

    Article  CAS  Google Scholar 

  49. Wang W, Tam KC, Ng TC, Goit RK, Chan KLS, Lo ACY. Long-term lutein administration attenuates retinal inflammation and functional deficits in early diabetic retinopathy using the Ins2Akita/+ mice. BMJ Open Diabetes Res Care. 2020;8:e001519.

    Article  Google Scholar 

  50. Kamoshita M, Toda E, Osada H, Narimatsu T, Kobayashi S, Tsubota K, et al. Lutein acts via multiple antioxidant pathways in the photo-stressed retina. Sci Rep. 2016;6:1–10.

    Article  Google Scholar 

  51. Keegan G, Pardhan S, Chichger H. Lutein and zeaxanthin attenuates VEGF-induced neovascularisation in human retinal microvascular endothelial cells through a Nox4-dependent pathway. Exp Eye Res. 2020;197:108104.

    Article  CAS  Google Scholar 

  52. Hwang JS, Han SG, Lee CH, Seo HG. Lutein suppresses hyperglycemia-induced premature senescence of retinal pigment epithelial cells by up-regulating SIRT1. J Food Biochem. 2018;42:e12495.

    Article  Google Scholar 

  53. Harikumar K, Nimita C, Preethi K, Kuttan R, Shankaranarayana M, Deshpande J. Toxicity profile of lutein and lutein Ester isolated from Marigold flowers (Tagetes erecta). Int J Toxicol. 2008;27:1–9.

    Article  CAS  Google Scholar 

  54. Shi C, Wang P, Airen S, Brown C, Liu Z, Townsend JH, Wang J, Jiang H. Nutritional and medical food therapies for diabetic retinopathy. Eye Vis (Lond). 2020;7:33.

    Article  Google Scholar 

  55. Raichle ME, Gusnard DA. Appraising the brain's energy budget. Proc Natl Acad Sci U S A. 2002;99(16):10237–9.

    Article  CAS  Google Scholar 

  56. Kurihara T, Westenskow PD, Gantner ML, Usui Y, Schultz A, Bravo S, et al. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. Elife. 2016;5:e14319.

    Article  Google Scholar 

  57. Okai Y, Higashi-Okai K, Sato EF, Konaka R, Inoue M. Potent radical scavenging activities of thiamin and thiamin diphosphate. J Clin Biochem Nutr. 2007;40(1):42–8.

    Article  CAS  Google Scholar 

  58. Luong KV, Nguyen LT. The impact of thiamine treatment in the diabetes mellitus. J Clin Med Res. 2012;4(3):153–60.

    CAS  Google Scholar 

  59. Beltramo E, Berrone E, Buttiglieri S, Porta M. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev. 2004;20(4):330–6.

    Article  CAS  Google Scholar 

  60. Booth AA, Khalifah RG, Hudson BG. Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end products: comparison with aminoguanidine. Biochem Biophys Res Commun. 1996;220(1):113–9.

    Article  CAS  Google Scholar 

  61. Thiamin-Health Professional Fact Sheet. National Institutes of Health. 2020. https://ods.od.nih.gov/factsheets/Thiamin-HealthProfessional/. Accessed 19 Feb 2020.

  62. Riboflavin-Health Professional Fact Sheet. National Institutes of Health. 2020. https://ods.od.nih.gov/factsheets/Riboflavin-HealthProfessional/. Accessed 6 Mar 2020. Shi et al. Eye and Vision 2020;7:33.

  63. McNulty H, Strain JJ, Hughes CF, Ward M. Riboflavin, MTHFR genotype and blood pressure: a personalized approach to prevention and treatment of hypertension. Mol Aspects Med. 2017;53:2–9.

    Article  CAS  Google Scholar 

  64. Moat SJ, Ashfield-Watt PA, Powers HJ, Newcombe RG, McDowell IF. Effect of riboflavin status on the homocysteine-lowering effect of folate in relation to the MTHFR (C677T) genotype. Clin Chem. 2003;49(2):295–302.

    Article  CAS  Google Scholar 

  65. Naghashpour M, Amani R, Sarkaki A, Ghadiri A, Samarbafzadeh A, Jafarirad S, et al. Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis. Iran J Basic Med Sci. 2016;19(4):439–48.

    Google Scholar 

  66. Liu W, Han X, Zhou X, Zhang S, Cai X, Zhang L, et al. Brain derived neurotrophic factor in newly diagnosed diabetes and prediabetes. Mol Cell Endocrinol. 2016;429:106–13.

    Article  CAS  Google Scholar 

  67. Mohn ES, Erdman JW Jr, Kuchan MJ, Neuringer M, Johnson EJ. Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: relationship to DHA oxidation products. PLoS One. 2017;12(10):e0186767.

    Article  Google Scholar 

  68. Kuvin JT, Ramet ME, Patel AR, Pandian NG, Mendelsohn ME, Karas RH. A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am Heart J. 2002;144(1):165–72.

    Article  CAS  Google Scholar 

  69. Domanico D, Verboschi F, Altimari S, Zompatori L, Vingolo EM. Ocular effects of niacin: a review of the literature. Med Hypothesis Discov Innov Ophthalmol. 2015;4(2):64–71.

    CAS  Google Scholar 

  70. Yan T, Chopp M, Ye X, Liu Z, Zacharek A, Cui Y, et al. Niaspan increases axonal remodeling after stroke in type 1 diabetes rats. Neurobiol Dis. 2012;46(1):157–64.

    Article  CAS  Google Scholar 

  71. Niacin-Health Professional Fact Sheet. National Institutes of Health. 2020. https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/. Accessed 6 Mar 2020.

  72. Pantothenic Acid-Health Professional Fact Sheet. 2020. https://ods.od.nih.gov/factsheets/PantothenicAcid-HealthProfessional/. Accessed 2 Mar 2020.

  73. Vitamin B6-Health Professional Fact Sheet. 2020. https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/. Accessed 24 Feb 2020.

  74. Morris MS, Picciano MF, Jacques PF, Selhub J. Plasma pyridoxal 5′-phosphate in the US population: the National Health and nutrition examination survey, 2003-2004. Am J Clin Nutr. 2008;87(5):1446–54.

    Article  CAS  Google Scholar 

  75. Lei X, Zeng G, Zhang Y, Li Q, Zhang J, Bai Z, et al. Association between homocysteine level and the risk of diabetic retinopathy: a systematic review and meta-analysis. Diabetol Metab Syndr. 2018;10:61.

    Article  Google Scholar 

  76. Kowluru RA, Mohammad G, Sahajpal N. Faulty homocysteine recycling in diabetic retinopathy. Eye Vis (Lond). 2020;7:4.

    Article  Google Scholar 

  77. Rubi B. Pyridoxal 5′-phosphate (PLP) deficiency might contribute to the onset of type I diabetes. Med Hypotheses. 2012;78(1):179–82.

    Article  CAS  Google Scholar 

  78. Horikawa C, Aida R, Kamada C, Fujihara K, Tanaka S, Tanaka S, et al. Vitamin B6 intake and incidence of diabetic retinopathy in Japanese patients with type 2 diabetes: analysis of data from the Japan diabetes complications study (JDCS). Eur J Nutr. 2019;58:281.

    Article  Google Scholar 

  79. Vrolijk MF, Opperhuizen A, Jansen EHJM, Hageman GJ, Bast A, Haenen GRMM. The vitamin B6 paradox: supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicol In Vitro. 2017;44:206–12.

    Article  CAS  Google Scholar 

  80. Haeusler RA, Camastra S, Astiarraga B, Nannipieri M, Anselmino M, Ferrannini E. Decreased expression of hepatic glucokinase in type 2 diabetes. Mol Metab. 2015;4(3):222–6.

    Article  CAS  Google Scholar 

  81. Xiang X, Liu Y, Zhang X, Zhang W, Wang Z. Effects of biotin on blood glucose regulation in type 2 diabetes rat model. Wei Sheng Yan Jiu. 2015;44(2):185–9, 195.

    CAS  Google Scholar 

  82. Biotin-Health Professional Fact Sheet. National Institutes of Health. 2020. https://ods.od.nih.gov/factsheets/Biotin-HealthProfessional/. Accessed 19 Feb 2020.

  83. Brazionis L, Rowley K, Itsiopoulos C, Harper CA, O’Dea K. Homocysteine and diabetic retinopathy. Diabetes Care. 2008;31(1):50–6.

    Article  CAS  Google Scholar 

  84. Srivastav K, Saxena S, Mahdi AA, Shukla RK, Meyer CH, Akduman L, et al. Increased serum level of homocysteine correlates with retinal nerve fiber layer thinning in diabetic retinopathy. Mol Vis. 2016;22:1352–60.

    CAS  Google Scholar 

  85. Heifetz EM, Birk RZ. MTHFR C677T polymorphism affects normotensive diastolic blood pressure independently of blood lipids. Am J Hypertens. 2015;8(3):387–92.

    Article  Google Scholar 

  86. Chen D, Wang J, Dan Z, Shen X, Ci D. The relationship between methylenetetrahydrofolate reductase C677T polymorphism and diabetic retinopathy: a meta-analysis in multiethnic groups. Ophthalmic Genet. 2018;39(2):200–7.

    Article  CAS  Google Scholar 

  87. Gopinath B, Wang JJ, Flood VM, Burlutsky G, Wong TY, Mitchell P. The associations between blood levels of homocysteine, folate, vitamin B12, and retinal vascular caliber. Am J Ophthalmol. 2009;148(6):902–9.

    Article  CAS  Google Scholar 

  88. Wang J, Brown C, Shi C, Townsend J, Gameiro GR, Wang P, et al. Improving diabetic and hypertensive retinopathy with a medical food containing L-methylfolate: a preliminary report. Eye Vis (Lond). 2019;6:21.

    Article  Google Scholar 

  89. Huang W, Prasad PD, Kekuda R, Leibach FH, Ganapathy V. Characterization of N5-methyltetrahydrofolate uptake in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1997;38(8):1578–87.

    CAS  Google Scholar 

  90. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59:365–73.

    Article  CAS  Google Scholar 

  91. Khodaeian M, Tabatabaei-Malazy O, Qorbani M, Farzadfar F, Amini P, Larijani B. Effect of vitamins C and E on insulin resistance in diabetes: a meta-analysis study. Eur J Clin Invest. 2015;45(11):1161–74.

    Article  CAS  Google Scholar 

  92. Tabatabaei-Malazy O, Nikfar S, Larijani B, Abdollahi M. Influence of ascorbic acid supplementation on type 2 diabetes mellitus in observational and randomized controlled trials; a systematic review with meta-analysis. J Pharm Pharm Sci. 2014;17(4):554–82.

    Article  Google Scholar 

  93. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia, VII, effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001;50:1938–42.

    Article  CAS  Google Scholar 

  94. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, et al. A family of mammalian Na+−dependent L-ascorbic acid transporters. Nature. 1999;399(6731):70–5.

    Article  CAS  Google Scholar 

  95. Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51(5):1000–13.

    Article  CAS  Google Scholar 

  96. Will JC, Byers T. Does diabetes mellitus increase the requirement for vitamin C? Nutr Rev. 1996;54(7):193–202.

    Article  CAS  Google Scholar 

  97. Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, et al. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 2009;127(4):475–82.

    Article  Google Scholar 

  98. Holekamp NM. The vitreous gel: more than meets the eye. Am J Ophthalmol. 2010;149(1):32–6.

    Article  Google Scholar 

  99. Park SW, Ghim W, Oh S, Kim Y, Park UC, Kang J, et al. Association of vitreous vitamin C depletion with diabetic macular ischemia in proliferative diabetic retinopathy. PLoS One. 2019;14(6):e0218433.

    Article  CAS  Google Scholar 

  100. Tabatabaei-Malazy O, Larijani B, Abdollahi M. A novel management of diabetes by means of strong antioxidants’ combination. J Med Hypotheses Ideas. 2013;7:25–30.

    Article  CAS  Google Scholar 

  101. Tabatabaei-Malazy O, Ardeshirlarijani E, Namazi N, Nikfar S, Jalili RB, Larijani B. Dietary antioxidative supplements and diabetic retinopathy; a systematic review. J Diabetes Metab Disord. 2019;18(2):705–16.

    Article  CAS  Google Scholar 

  102. Jude S, Amalraj A, Kunnumakkara AB, Divya C, Löffler BM, Gopi S. Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (Cureit™) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules. 2018;23:2415.

    Article  Google Scholar 

  103. Snijder M, van Dam R, Visser M, Deeg D, Seidell J, Lips P, et al. Vitamin D and diabetes. Diabetologia. 2005;48:1247–57.

    Article  Google Scholar 

  104. Luo BA, Gao F, Qin LL. The association between vitamin D deficiency and diabetic retinopathy in type 2 diabetes: a meta-analysis of observational studies. Nutrients. 2017;9:307.

    Article  Google Scholar 

  105. Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z. Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J Diabetes Res. 2018;2018:8193523.

    Article  Google Scholar 

  106. Albert DM, Scheef EA, Wang S, Mehraein F, Darjatmoko SR, Sorenson CM, et al. Calcitriol is a potent inhibitor of retinal neovascularization. Invest Ophthalmol Vis Sci. 2007;48:2327–34.

    Article  Google Scholar 

  107. Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfeld AE. 1alpha,25- dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res. 2000;87:214–20.

    Article  CAS  Google Scholar 

  108. Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ. 1alpha,25-dihydroxyvitamin D3 (calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther. 2007;6:1433–9.

    Article  CAS  Google Scholar 

  109. Bahar-Shany K, Ravid A, Koren R. Upregulation of MMP-9 production by TNF alpha in keratinocytes and its attenuation by vitamin D. J Cell Physiol. 2010;22:729–37.

    Google Scholar 

  110. Nadri G, Saxena S, Stefanickova J, Ziak P, Benacka J, Gilhotra JS, Kruzliak P. Disorganization of retinal inner layers correlates with ellipsoid zone disruption and retinal nerve fiber layer thinning in diabetic retinopathy. J Diabetes Complications. 2019;33(8):550–3.

    Article  Google Scholar 

  111. Saxena S, Nadri G, Kaur A, Mahdi A, Ahmad K, Garg P. Low serum vitamin D levels correlate with disorganization of retinal inner layers, ellipsoid zone disruption and retinal pigment epithelium alterations in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2019;60(9):5321.

    Google Scholar 

  112. Derouiche S, Kechrid Z. Zinc supplementation overcomes effects of copper on zinc status, carbohydrate metabolism and some enzyme activities in diabetic and nondiabetic rats. Can J Diabetes. 2016;40(4):342–7.

    Article  Google Scholar 

  113. Zinc-Health Professional Fact Sheet. National Institutes of Health. 2020. https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/. Accessed 6 Mar 2020.

  114. Miao X, Sun W, Miao L, Fu Y, Wang Y, Su G, et al. Zinc and diabetic retinopathy. J Diabetes Res. 2013;2013:425854.

    Article  Google Scholar 

  115. Luo YY, Zhao J, Han XY, Zhou XH, Wu J, Ji LN. Relationship between serum zinc level and microvascular complications in patients with type 2 diabetes. Chin Med J (Engl). 2015;128(24):3276–82.

    Article  CAS  Google Scholar 

  116. Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA, et al. Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochem Biophys Res Commun. 2006;351(1):165–70.

    Article  CAS  Google Scholar 

  117. Ankita SS, Nim DK, Stefanickova J, Ziak P, Stefanicka P, et al. Retinal photoreceptor apoptosis is associated with impaired serum ionized calcium homeostasis in diabetic retinopathy: an in-vivo analysis. J Diabetes Complications. 2019;33(3):208–11.

    Article  CAS  Google Scholar 

  118. De S, Saxena S, Kaur A, Mahdi AA, Misra A, Singh M, Meyer CH, Akduman L. Sequential restoration of external limiting membrane and ellipsoid zone after intravitreal anti-VEGF therapy in diabetic macular oedema. Eye (Lond). 2021;35(5):1490–5.

    Article  CAS  Google Scholar 

  119. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2:e93751.

    Article  Google Scholar 

  120. Rossino MG, Casini G. Nutraceuticals for the treatment of diabetic retinopathy. Nutrients. 2019;11:771.

    Article  CAS  Google Scholar 

  121. Davinelli S, Maes M, Corbi G, Zarrelli A, Willcox DC, Scapagnini G. Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. Immun Ageing. 2016;13:16.

    Article  Google Scholar 

  122. Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuro-Psychoph. 2003;27:283–90.

    Article  CAS  Google Scholar 

  123. Nucci C, Russo R, Martucci A, Giannini C, Garaci F, Floris R, et al. New strategies for neuroprotection in glaucoma, a disease that affects the central nervous system. Eur J Pharmacol. 2016;787:119–26.

    Article  CAS  Google Scholar 

  124. Filippelli M, Campagna G, Vito P, Zotti T, Ventre L, Rinaldi M, et al. Anti-inflammatory effect of curcumin, Homotaurine, and vitamin D3 on human vitreous in patients with diabetic retinopathy. Front Neurol. 2021;11:592274.

    Article  Google Scholar 

  125. Millen AE, Sahli MW, Nie J, LaMonte MJ, Lutsey PL, Klein BE, et al. Adequate vitamin D status is associated with the reduced odds of prevalent diabetic retinopathy in African Americans and Caucasians. Cardiovasc Diabetol. 2016;15(1):128.

    Article  Google Scholar 

  126. Wong M, Man R, Fenwick EK, Gupta P, Li LJ, van Dam RM, Lamoureux EL, et al. Dietary intake and diabetic retinopathy: a systematic review. PLoS One. 2018;13(1):e0186582.

    Article  Google Scholar 

  127. Chiu CJ, Taylor A. Dietary hyperglycemia, glycemic index and metabolic retinal diseases. Prog Retin Eye Res. 2011;30(1):18–53.

    Article  CAS  Google Scholar 

  128. Blackwood AD, Salter J, Dettmar PW, Chaplin MF. Dietary fibre, physicochemical properties and their relationship to health. J R Soc Promot Health. 2000;120(4):242–7.

    Article  CAS  Google Scholar 

  129. Ma Q, Shen JH, Shen SR, Das UN. Bioactive lipids in pathological retinopathy. Crit Rev Food Sci Nutr. 2014;54(1):1–16.

    Article  CAS  Google Scholar 

  130. Das UN. Lipoxins, resolvins, and protectins in the prevention and treatment of diabetic macular edema and retinopathy. Nutrition. 2013;29(1):1–7.

    Article  CAS  Google Scholar 

  131. Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Campbell LV. Moderate alcohol consumption, estrogen replacement therapy, and physical activity are associated with increased insulin sensitivity: is abdominal adiposity the mediator? Diabetes Care. 2003;26(10):2734–40.

    Article  Google Scholar 

  132. Ma Q, Chen D, Sun HP, Yan N, Xu Y, Pan CW. Regular Chinese green tea consumption is protective for diabetic retinopathy: a clinic-based case-control study. J Diabetes Res. 2015;2015:231570.

    Article  Google Scholar 

  133. Wang S, Wang JJ, Wong TY. Alcohol and eye diseases. Surv Ophthalmol. 2008;53(5):512–25.

    Article  Google Scholar 

  134. Kumari N. Is coffee consumption associated with age-related macular degeneration and diabetic retinopathy? All Res J Biol. 2014;5(2):7–13.

    Google Scholar 

  135. American Diabetes Association. 3 foundations of care and comprehensive medical evaluation. Diabetes Care. 2016;39(1):S23–35.

    Article  Google Scholar 

  136. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(1):S120–43.

    Article  Google Scholar 

  137. American Diabetes A. Standards of medical care in diabetes—2013. Diabetes Care. 2013;36(1):S11–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M., Mohan, A., Chaubey, A., Saxena, S. (2022). Nutrient Supplementation in Diabetic Macular Edema. In: Saxena, S., Cheung, G., Lai, T.Y., Sadda, S.R. (eds) Diabetic Macular Edema. Springer, Singapore. https://doi.org/10.1007/978-981-19-7307-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7307-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7306-2

  • Online ISBN: 978-981-19-7307-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics