Skip to main content

Application of Artificial Intelligence in Oral and Maxillofacial Anesthesia

  • Chapter
  • First Online:
Anesthesia for Oral and Maxillofacial Surgery
  • 542 Accesses

Abstract

Artificial intelligence (AI) has been an attractive topic in medicine along with the rapid development of digital and information technologies. Nowadays AI has already made some breakthroughs in medicine. With the assistance of AI, more precise models were used in clinical prediction, diagnosis, and decision-making. Also, in the field of anesthesia, with the booming development of computer technology and techniques, the application of AI has become an attractive research direction that has great advantages and value for the future development of anesthesia. Predictive models can promptly indicate possible adverse events, and decision-making and diagnostic models can guide the corresponding clinical practice. In addition, intelligent monitoring and remote control technologies have greatly contributed to the development of remote anesthesia. The application and improvement of drug robots and operator-assisted robots will further automate clinical anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poole D, Mackworth A, Goebel R. Computational intelligence: a logical approach. New York: Oxford University Press; 1998; ISBN 978-0-19-510270-3. Archived from the original on 26 July 2020. Retrieved 22 August 2020.

    Google Scholar 

  2. Mitchell T. Machine learning. New York: McGraw Hill; 1997; ISBN 0-07-042807-7. OCLC 36417892.

    Google Scholar 

  3. Alpaydin E. Introduction to machine learning. 4th ed. Cambridge, MA: MIT; 2020. p. xix, 1–3, 13–18. ISBN 978-0262043793.

    Google Scholar 

  4. James G. An introduction to statistical learning: with applications in R. New York: Springer; 2013. p. 176; ISBN 978-1461471370.

    Book  Google Scholar 

  5. Brownlee J. What is the difference between test and validation datasets? 2017. Accessed 12 Oct 2017.

    Google Scholar 

  6. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828. https://doi.org/10.1109/tpami.2013.50; arXiv:1206.5538.

    Article  Google Scholar 

  7. Education I. What is deep learning? 2021. [online] Ibm.com. https://www.ibm.com/cloud/learn/deep-learning. Accessed 13 Sept 2021.

  8. Education I. What are neural networks? 2021. [online] Ibm.com. https://www.ibm.com/cloud/learn/neural-networks. Accessed 13 Sept 2021.

  9. Sas.com. 2021. Big Data: what it is and why it matters. [online]. https://www.sas.com/en_us/insights/big-data/what-is-big-data.html#:~:text=Big%20data%20is%20a%20term,day%2Dto%2Dday%20basis.&text=It's%20what%20organizations%20do%20with,decisions%20and%20strategic%20business%20moves. Accessed 13 Sept 2021.

  10. Uddin S, Khan A, Hossain ME, et al. Comparing different supervised machine learning algorithms for disease prediction[J]. BMC Med Inform Decis Mak. 2019;19(1):281.

    Article  Google Scholar 

  11. Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007;2:59–77.

    Google Scholar 

  12. Zhao X, Wu Y, Lee D L, et al. IForest: interpreting random forests via visual analytics. IEEE Trans Vis Comput Graph. 2018.

    Google Scholar 

  13. Hashimoto DA, Witkowski E, Gao L, et al. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379–94.

    Article  Google Scholar 

  14. Pergialiotis V, Pouliakis A, Parthenis C, et al. The utility of artificial neural networks and classification and regression trees for the prediction of endometrial cancer in postmenopausal women. Public Health. 2018;164:1–6.

    Article  CAS  Google Scholar 

  15. Hinton G. Deep learning-a technology with the potential to transform health care. JAMA. 2018;320(11):1101–2.

    Article  Google Scholar 

  16. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  Google Scholar 

  17. Lin CS, et al. Application of an artificial neural network to predict postinduction hypotension during general anesthesia. Med Decis Mak. 2011;31(2):308–14.

    Article  Google Scholar 

  18. Kendale S, et al. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology. 2018;129(4):675–88.

    Article  Google Scholar 

  19. Lundberg SM, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–60.

    Article  Google Scholar 

  20. van der Ven W, Veelo D, Wijnberge M, van der Ster B, Vlaar A, Geerts B. One of the first validations of an artificial intelligence algorithm for clinical use: the impact on intraoperative hypotension prediction and clinical decision-making. Surgery. 2021;169(6):1300–3.

    Article  Google Scholar 

  21. Traeger M, Eberhart A, Geldner G, et al. Vorhersage von Ubelkeit und Erbrechen in der postoperativen Phase durch ein künstliches neuronales Netz [Prediction of postoperative nausea and vomiting using an artificial neural network]. Anaesthesist. 2003;52(12):1132–8. https://doi.org/10.1007/s00101-003-0575-y.

    Article  CAS  Google Scholar 

  22. Suhre W, O’Reilly-Shah V, Van Cleve W. Cannabis use is associated with a small increase in the risk of postoperative nausea and vomiting: a retrospective machine-learning causal analysis. BMC Anesthesiol. 2020;20(1):115.

    Article  CAS  Google Scholar 

  23. Peng S, Wu K, Wang J, Chuang J, Peng S, Lai Y. Predicting postoperative nausea and vomiting with the application of an artificial neural network. Br J Anaesth. 2007;98(1):60–5.

    Article  CAS  Google Scholar 

  24. Cuendet GL, et al. Facial image analysis for fully automatic prediction of difficult endotracheal intubation. IEEE Trans Biomed Eng. 2016;63(2):328–39. https://doi.org/10.1109/TBME.2015.2457032.

    Article  Google Scholar 

  25. Hayasaka T, Kawano K, Kurihara K, Suzuki H, Nakane M, Kawamae K. Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study. J Intensive Care. 2021;9(1):38.

    Article  Google Scholar 

  26. Cooper JB, Newbower RS, Long CD, et al. Preventable anesthesia mishaps: a study of human factors. BMJ Qual Safety. 2002;11:277–82.

    Article  Google Scholar 

  27. Mylrea KC, Orr JA, Westenskow DR. Integration of monitoring for intelligent alarms in anesthesia: neural networks--can they help? J Clin Monit. 1993;9:31–7.

    Article  CAS  Google Scholar 

  28. Bhupendra G, Hamid G, Harrison Michael J, et al. Intelligent monitoring of critical pathological events during anesthesia. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4343–6.

    Google Scholar 

  29. Mansoor M, Hamid G, Harrison Michael J. A fuzzy logic-based system for anaesthesia monitoring. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3974–7.

    Google Scholar 

  30. Quan L, Yi-Feng C, Shou-Zen F, et al. EEG signals analysis using multiscale entropy for depth of anesthesia monitoring during surgery through artificial neural networks. Comput Math Methods Med. 2015;2015:232381.

    Google Scholar 

  31. Benzy VK, Jasmin EA, Cherian KR, et al. Relative wave energy-based adaptive neuro-fuzzy inference system for estimation of the depth of anaesthesia. J Integr Neurosci. 2018;17:43–51.

    Article  CAS  Google Scholar 

  32. Kotoe K, Motohiro H, Osamu N, et al. Initial experience with the use of remote control monitoring and general anesthesia during radiosurgery for pediatric patients. Pediatr Neurosurg. 2011;47:158–66.

    Article  Google Scholar 

  33. Cone Stephen W, Lynne G, Russell H, et al. Remote anesthetic monitoring using satellite telecommunications and the internet. Anesth Analg. 2006;102:1463–7.

    Article  CAS  Google Scholar 

  34. Macaire P, Nadhari M, Greiss H, et al. Internet remote control of pump settings for postoperative continuous peripheral nerve blocks: a feasibility study in 59 patients. Ann Fr Anesth Reanim. 2014;33:e1–7.

    Article  CAS  Google Scholar 

  35. ManagingLife Inc. Manage my pain. https://www.managinglife.com.

  36. Rahman QA, Janmohamed T, Pirbaglou M, et al. Defining and predicting pain volatility in users of the manage my pain app: analysis using data mining and machine learning methods. J Med Internet Res. 2018;20(11):e12001.

    Google Scholar 

  37. Schwilden H, Schuttler J. The determination of an effective therapeutic infusion rate for intravenous anesthetics using feedback-controlled dosages. Anaesthesist. 1990;39:603–6.

    CAS  Google Scholar 

  38. Ngai L, Morgan LG, Fatima B-L, et al. Feasibility of closed-loop titration of propofol and remifentanil guided by the spectral M-entropy monitor. Anesthesiology. 2012;116:286–95.

    Article  Google Scholar 

  39. Hemmerling TM, Charabati S, Zaouter C, et al. A randomized controlled trial demonstrates that a novel closed-loop propofol system performs better hypnosis control than manual administration. Can J Anesth. 2010;57:725–35. https://doi.org/10.1007/s12630-010-9335-z.

    Article  Google Scholar 

  40. Liu N, Chazot T, Hamada S, Landais A, Boichut N, Dussaussoy C, Trillat B, Beydon L, Samain E, Sessler DI, Fischler M. Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg. 2011;112:546–57.

    Article  CAS  Google Scholar 

  41. Cédrick Z, Hemmerling Thomas M, Stefano M, et al. Feasibility of automated Propofol sedation for transcatheter aortic valve implantation: a pilot study. Anesth Analg. 2017;125:1505–12.

    Article  Google Scholar 

  42. Eleveld DJ, Proost JH, Wierda JM. Evaluation of a closed-loop muscle relaxation control system. Anesth Analg. 2005;101(3):758–64.

    Article  Google Scholar 

  43. Mendez JA, Leon A, Marrero A, et al. Improving the anesthetic process by a fuzzy rule based medical decision system. Artif Intell Med. 2018;84:159–70. https://doi.org/10.1016/j.artmed.2017.12.005.

    Article  Google Scholar 

  44. You’re Getting McSleepy, So Very McSleepy.... McGill Alumni. Available from: https://mcgillnews.mcgill.ca/s/1762/news/interior.aspx?sid=1762&;gid=2;pgid=1187.

  45. Hemmerling Thomas M, Mohamad W, Cedrick Z, et al. The Kepler intubation system. Anesth Analg. 2012;114:590–4.

    Article  CAS  Google Scholar 

  46. Hemmerling TM, Taddei R, Wehbe M, et al. First robotic tracheal intubations in humans using the Kepler intubation system. Br J Anaesth. 2012;108:1011–6.

    Article  CAS  Google Scholar 

  47. Tighe PJ, et al. Robot-assisted regional anesthesia: a simulated demonstration. Anesth Analg. 2010;111(3):813–6.

    Article  Google Scholar 

  48. Hemmerling TM, et al. First robotic ultrasound-guided nerve blocks in humans using the Magellan system. Anesth Analg. 2013;116(2):491–4.

    Article  Google Scholar 

  49. Morse J, Terrasini N, Wehbe M, et al. Comparison of success rates, learning curves, and inter-subject performance variability of robot-assisted and manual ultrasound-guided nerve block needle guidance in simulation. Br J Anaesth. 2014;112:1092–7.

    Article  CAS  Google Scholar 

  50. O'Donnell BD, et al. Robotic assistance with needle guidance. Br J Anaesth. 2015;114(4):708–9.

    Article  CAS  Google Scholar 

  51. de Filho GR, Gomes HP, da Fonseca MH, Hoffman JC, Pederneiras SG, Garcia JH. Predictors of successful neuraxial block: a prospective study. Eur J Anaesthesiol. 2002;19(6):447–51. https://doi.org/10.1017/s0265021502000716.

    Article  Google Scholar 

  52. Conroy PH, Luyet C, McCartney CJ, McHardy PG. Real-time ultrasound-guided spinal anaesthesia: a prospective observational study of a new approach. Anesthesiol Res Pract. 2013;2013:525818.

    CAS  Google Scholar 

  53. Karmakar MK, Li X, Ho AM-H, Kwok WH, Chui PT. Real-time ultrasound-guided paramedian epidural access: evaluation of a novel in-plane technique. Br J Anaesth. 2009;102(6):845–54.

    Article  CAS  Google Scholar 

  54. Leng Y, Shuang Y, Tan KK, et al. Development of a real-time lumbar ultrasound image processing system for epidural needle entry site localization. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:4093–6.

    Google Scholar 

  55. Belavy D, Ruitenberg MJ, Brijball RB. Feasibility study of real-time three−/four-dimensional ultrasound for epidural catheter insertion. Br J Anaesth. 2011;107:438–45.

    Article  CAS  Google Scholar 

  56. Parmida B, Paul M, Abtin R, et al. Three-dimensional ultrasound-guided real-time midline epidural needle placement with Epiguide: a prospective feasibility study. Ultrasound Med Biol. 2017;43:375–9.

    Article  Google Scholar 

  57. Mehran P, Victoria L, Purang A, et al. Automatic localization of the needle target for ultrasound-guided epidural injections. IEEE Trans Med Imaging. 2018;37:81–92.

    Article  Google Scholar 

  58. Thiem D, Römer P, Gielisch M, Al-Nawas B, Schlüter M, Plaß B, Kämmerer P. Hyperspectral imaging and artificial intelligence to detect oral malignancy – part 1 - automated tissue classification of oral muscle, fat and mucosa using a light-weight 6-layer deep neural network. Head Face Med. 2021;17(1):38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, M. (2023). Application of Artificial Intelligence in Oral and Maxillofacial Anesthesia. In: Jiang, H., Xia, M. (eds) Anesthesia for Oral and Maxillofacial Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-7287-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7287-4_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7286-7

  • Online ISBN: 978-981-19-7287-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics