Skip to main content

Reinforcement Learning Based Weighting Factors’ Real-Time Updating Scheme for the FCS Model Predictive Control to Improve the Large-Signal Stability of Inverters

  • Chapter
  • First Online:
Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning

Abstract

The previous chapter demonstrates that the finite control set (FCS) model predictive control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Vazquez et al., “Model predictive control: A review of its applications in power electronics,” IEEE Ind. Electron. Mag., vol. 8, no. 1, pp. 16–31, 2014.

    Article  Google Scholar 

  2. S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model Predictive Control for Power Converters and Drives: Advances and Trends,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935–947, 2017.

    Article  Google Scholar 

  3. Z. Ma, Z. Xin, J. He, and Z. Zeng, “Robust Constant Switching Frequency Predictive Current Control with a Dichotomy Solution for Three-Phase Grid-Connected Inverters,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 5282–5285.

    Google Scholar 

  4. J. He, X. Zhang, H. Ma, and C. Cai, “Lyapunov-based Large-signal Control of Three- phase Stand-alone Inverters with Inherent Dual Control Loops and Load Disturbance Adaptivity,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8391–8401, 2020.

    Article  Google Scholar 

  5. J. Huang, F. Guo, C. Wen, B. Yang, and J. Xiao, “A direct power control strategy for AC/DC converter based on best switching state approach,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 4, pp. 2273–2286, 2018.

    Article  Google Scholar 

  6. H. Komurcugil, S. Member, N. Altin, and S. Ozdemir, “Lyapunov-Function and Proportional-Resonant-Based Control Strategy for Single-Phase Grid-Connected VSI With LCL Filter,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2838–2849, 2016.

    Article  Google Scholar 

  7. J. He, C. C. Y. John, X. Zhang, Z. Li, and Z. Liu, “An Adaptive Dual-loop Lyapunov-based Control Scheme for a Single-Phase UPS Inverter,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 8886–8891, 2020.

    Article  Google Scholar 

  8. X. Li, J. He, C. Wen, and X. Liu, “Backstepping Based Adaptive Control of a Class of Uncertain Incommensurate Fractional-Order Nonlinear Systems with External Disturbance,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 4087–4095, 2022.

    Article  Google Scholar 

  9. J. He and X. Zhang, “An Ellipse-optimized Composite Backstepping Control Strategy for a Point-of-load Inverter Under Load Disturbance in the Shipboard Power System,” IEEE Open J. Power Electron., vol. 1, no. 8, pp. 420–430, 2020.

    Article  Google Scholar 

  10. S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fast-transient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994–3005, 2012.

    Article  Google Scholar 

  11. P. Cortés et al., “Guidelines for weighting factors design in model predictive control of power converters and drives,” Proc. IEEE Int. Conf. Ind. Technol., pp. 1–7, 2009.

    Google Scholar 

  12. P. Zanchetta, “Heuristic multi-objective optimization for cost function weights selection in finite states model predictive control,” Preced. 2011 - Work. Predict. Control Electr. Drives Power Electron., pp. 70–75, 2011.

    Google Scholar 

  13. S. A. Davari, D. A. Khaburi, and R. Kennel, “An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1540–1551, 2012.

    Article  Google Scholar 

  14. F. Villarroel, J. R. Espinoza, C. A. Rojas, J. Rodriguez, M. Rivera, and D. Sbarbaro, “Multiobjective switching state selector for finite-states model predictive control based on fuzzy decision making in a matrix converter,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 589–599, 2013.

    Article  Google Scholar 

  15. T. Dragičević and M. Novak, “Weighting Factor Design in Model Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8870–8880, 2019.

    Article  Google Scholar 

  16. M. Novak, T. Dragicevic, and F. Blaabjerg, “Weighting factor design based on artificial neural network for finite set MPC operated 3L-NPC converter,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2019-March, pp. 77–82, 2019.

    Google Scholar 

  17. Z. Ma, X. Zhang, J. Huang, and B. Zhao, “Stability-constraining-dichotomy-solution-based model predictive control to improve the stability of power conversion system in the MEA,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5696–5706, 2019.

    Article  Google Scholar 

  18. T. Dragičević, “Dynamic Stabilization of DC Microgrids with Predictive Control of Point-of-Load Converters,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10872–10884, 2018.

    Article  Google Scholar 

  19. J. He, C. Wen, and X. Zhang, “Composite-Bisection Predictive Control to Stabilize and Indirectly Regulate Downstream Load Inverters Cascaded With LC Input Filters in the SPS,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 6, pp. 6854–6863, Dec. 2021.

    Article  Google Scholar 

  20. P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323–1325, 2012.

    Article  Google Scholar 

  21. J. He, L. Xing, and C. Wen, “Weighting Factors’ Real-time Updating for Finite Control Set Model Predictive Control of Power Converters via Reinforcement Learning,” in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 2021, pp. 707–712.

    Google Scholar 

  22. “Reinforcement Learning Agents - MATLAB & Simulink.” [Online]. Available: https://www.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html. [Accessed: 14-May-2020].

  23. T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., Sep. 2016.

    Google Scholar 

  24. T. Dragicevic, P. Wheeler, and F. Blaabjerg, “Artificial Intelligence Aided Automated Design for Reliability of Power Electronic Systems,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7161–7171, 2019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., He, J., Ma, H., Ma, Z., Ge, X. (2023). Reinforcement Learning Based Weighting Factors’ Real-Time Updating Scheme for the FCS Model Predictive Control to Improve the Large-Signal Stability of Inverters. In: Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning. Springer, Singapore. https://doi.org/10.1007/978-981-19-7191-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7191-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7190-7

  • Online ISBN: 978-981-19-7191-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics