Skip to main content

Photoluminescent Carbon Dots: A New Generation Nanocarbon Material

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

Carbon dots, an advancing group of zero-dimensional quasi-spherical nanocarbon particles, have received great recognition in the scientific world during recent years. This promising nanomaterial with exceptional features is widely explored in various aspects owing to their excellent optical, structural, and physicochemical properties. Many facile and cost-effective synthetic methodologies such as hydrothermal treatment, microwave pyrolysis, and arc discharge method can be implemented for fabricating these carbon dots. Synthetic methodologies as well as precursor materials determine the applicability, and the use of biomass as a precursor is discussed in detail. They possess superior properties such as tunable photoluminescence, easy functionalization, high crystallization, excellent biocompatibility, and good disperse ability. Functional properties can be enhanced by chemical modification as well as doping on the surface. These multifunctional materials and their nanocomposites find potential applications in the areas of photocatalysis, bioimaging, and sensing. The challenges and future scope of carbon dots in the scientific realm are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun YP et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  PubMed  Google Scholar 

  2. Xu X et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  PubMed  Google Scholar 

  3. Fernando KAS et al (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7(16):8363–8376

    Article  CAS  PubMed  Google Scholar 

  4. Lu KQ, Quan Q, Zhang N, Xu YJ (2016) Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. J Energy Chem 25(6):927–935

    Article  Google Scholar 

  5. Shen LM, Liu J (2016) New development in carbon quantum dots technical applications. Talanta 156–157:245–256

    Article  PubMed  Google Scholar 

  6. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699

    Article  CAS  Google Scholar 

  7. Wang D et al (2017) Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 3(3):402–408

    Article  Google Scholar 

  8. Wang R, Wang X, Sun Y (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors Actuators B Chem 241:73–79

    Article  CAS  Google Scholar 

  9. Ridha AA, Pakravan P, Azandaryani AH, Zhaleh H (2020) Carbon dots; the smallest photoresponsive structure of carbon in advanced drug targeting. J Drug Deliv Sci Technol 55:101408

    Article  Google Scholar 

  10. Hola K et al (2014) Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603

    Article  CAS  Google Scholar 

  11. Tuerhong M, Xu Y, Yin XB (2017) Review on carbon dots and their applications. Chinese J Anal Chem 45:139–150

    Article  Google Scholar 

  12. Zheng L et al (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    Article  CAS  PubMed  Google Scholar 

  13. Peng J, Gao W, Gupta BK et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  PubMed  Google Scholar 

  14. Lin L, Zhang S (2012) Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun 48:10177–10179

    Article  CAS  Google Scholar 

  15. Hu C et al (2014) Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection. Small 10:4926–4933

    Article  CAS  PubMed  Google Scholar 

  16. Xie R et al (2016) Graphene quantum dots as smart probes for biosensing. Anal Methods 8:4001–4016

    Article  CAS  Google Scholar 

  17. Dong Y et al (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743

    Article  CAS  Google Scholar 

  18. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  CAS  Google Scholar 

  19. Ding H et al (2017) Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J Mater Chem B 5:5272–5277

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chemie Int Ed 51:9297–9301

    Article  CAS  Google Scholar 

  21. Zhu H et al (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120. https://doi.org/10.1039/B907612C

    Article  Google Scholar 

  22. Yang Y et al (2011) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382

    Article  Google Scholar 

  23. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC Trends Anal Chem C 89:163–180

    Article  CAS  Google Scholar 

  24. Shuaib EP et al (2019) Carbon nanoparticles synthesized by laser ablation of coconut shell charcoal in liquids for glucose sensing applications. Mater Res Express (6)11:115610

    Google Scholar 

  25. Xiao J, Liu P, Wang CX, Yang GW (2017) External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87:140–222

    Article  CAS  Google Scholar 

  26. Yu H, Li X, Zeng X, Lu Y (2020) Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem Commun 56:5194–5194

    Article  CAS  Google Scholar 

  27. Xu ZQ et al (2014) Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging. Carbon 66:351–360

    Article  CAS  Google Scholar 

  28. Ventrella A, Camisasca A, Fontana A, Giordani S (2020) Synthesis of green fluorescent carbon dots from carbon nano-onions and graphene oxide. RSC Adv 10:36404–36412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun D et al (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434

    Article  CAS  Google Scholar 

  30. Bao L, Liu C, Zhang ZL, Pang DW (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27:1663–1667

    Article  CAS  PubMed  Google Scholar 

  31. Hu Q et al (2014) Green synthesis of fluorescent nitrogen/sulfur-doped carbon dots and investigation of their properties by HPLC coupled with mass spectrometry. RSC Adv 4:18065–18073

    Article  CAS  Google Scholar 

  32. Devi R, Vignesh Kumar TH, Sundramoorthy AK (2018) Electrochemically exfoliated carbon quantum dots modified electrodes for detection of dopamine neurotransmitter. J Electrochem Soc (165)12:G3112

    Google Scholar 

  33. Zhou J et al (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129(4):744–745

    Article  CAS  PubMed  Google Scholar 

  34. Liu M et al (2016) Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141:2657–2664

    Article  CAS  PubMed  Google Scholar 

  35. Bao L et al (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806

    Article  CAS  PubMed  Google Scholar 

  36. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565

    Article  CAS  Google Scholar 

  37. Hou Y et al (2015) One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta 866:69–74

    Article  CAS  PubMed  Google Scholar 

  38. Wang F, Wang S, Sun Z, Zhu H (2015) Study on ultrasonic single-step synthesis and optical properties of nitrogen-doped carbon fluorescent quantum dots. Fuller Nanotub 23(9):769–776

    Article  Google Scholar 

  39. Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583–589

    Article  CAS  Google Scholar 

  40. Liu H et al (2014) A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy. Nanoscale Res Lett 9:1–11

    Article  Google Scholar 

  41. Dang H et al (2016) Large-scale ultrasonic fabrication of white fluorescent carbon dots. Ind Eng Chem Res 55:5335–5341

    Article  CAS  Google Scholar 

  42. He C, Yan H, Li X, Wang X (2019) In situ fabrication of carbon dots-based lubricants using a facile ultrasonic approach. Green Chem 21:2279–2285

    Article  CAS  Google Scholar 

  43. Yuan F et al (2016) Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today 11:565–586

    Article  CAS  Google Scholar 

  44. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Wei J, Su S, Qiu J (2014) Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New J Chem 39:501–507

    Article  Google Scholar 

  46. Zhang B, Liu CY, Liu Y (2010) A novel one-step approach to synthesize fluorescent carbon nanoparticles. Eur J Inorg Chem 2010:4411–4414

    Article  Google Scholar 

  47. Wang H et al (2016) High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 155:62–69

    Article  CAS  PubMed  Google Scholar 

  48. Yang ZC et al (2011) Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun 47:11615–11617

    Article  CAS  Google Scholar 

  49. Mehta VN et al (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors Actuators B Chem 213:434–443

    Article  CAS  Google Scholar 

  50. Wang L, Zhou HS (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86:8902–8905

    Article  CAS  PubMed  Google Scholar 

  51. Shi J et al (2017) Green synthesis of fluorescent carbon dots for sensitive detection of Fe2+ and hydrogen peroxide. J Nanoparticle Res 19:209

    Article  Google Scholar 

  52. Bhunia SK et al (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1473–1479

    Article  PubMed  PubMed Central  Google Scholar 

  53. Han C et al (2016) Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron 83:229–236

    Article  CAS  PubMed  Google Scholar 

  54. Ding H et al (2019) Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. J Lum 211:298–304

    Article  CAS  Google Scholar 

  55. Jiang Y et al (2015) A fluorescence turn-off chemosensor based on N-doped carbon quantum dots for detection of Fe3+ in aqueous solution. Mater Lett C 141:366–368

    Article  CAS  Google Scholar 

  56. Tang L et al (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  PubMed  Google Scholar 

  57. Campos BB et al (2016) Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection. J Colloid Interface Sci 465:165–173

    Article  CAS  PubMed  Google Scholar 

  58. Dai H et al (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors Actuators, B Chem 202:201–208

    Article  CAS  Google Scholar 

  59. Qu K, Wang J, Ren J, Qu X (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of Iron(III) ions and dopamine. Chem A Eur J 19:7243–7249

    Google Scholar 

  60. Li Z et al (2015) Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. J Mater Chem C 3:1922–1928

    Article  CAS  Google Scholar 

  61. Wang W et al (2014) Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst 139:1692–1696

    Article  CAS  PubMed  Google Scholar 

  62. Zhu S, Meng Q et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Engl 52:3953–3957

    Article  CAS  PubMed  Google Scholar 

  63. Li M et al (2018) Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction. Appl Catal B 231:269–276

    Article  CAS  Google Scholar 

  64. Wang Q et al (2014) Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J Nanobiotechnology 12:1–12

    Article  Google Scholar 

  65. El-Shabasy RM et al (2021) Recent developments in carbon quantum dots: properties, fabrication techniques, and bio-applications. Process 9:388

    Article  CAS  Google Scholar 

  66. Zhao C, Li X, Cheng C, Yang Y (2019) Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt(II) ions and pH sensing. Microchem J 147:183–190

    Article  CAS  Google Scholar 

  67. Wang J, Qiu J (2016) A review of carbon dots in biological applications. J Mater Sci 51:4728–4738

    Article  CAS  Google Scholar 

  68. Feng T et al (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10:4410–4420

    Article  CAS  PubMed  Google Scholar 

  69. Dager A, Uchida T, Maekawa T, Tachibana M (2019) Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: Photoluminescence analysis using machine learning. Sci Reports 9:1–12

    CAS  Google Scholar 

  70. Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C Mater 38:20–27

    Article  CAS  Google Scholar 

  71. Arumugam N, Kim J (2018) Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions. Mater Lett 219:37–40

    Article  CAS  Google Scholar 

  72. Zhao S et al (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7:17054–17060

    Article  CAS  PubMed  Google Scholar 

  73. Bano D, Kumar V, Singh VK, Hasan SH (2018) Green synthesis of fluorescent carbon quantum dots for the detection of mercury(II) and glutathione. New J Chem 42:5814–5821

    Article  CAS  Google Scholar 

  74. Zhou J et al (2012) Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 66:222–224

    Article  CAS  Google Scholar 

  75. Liu W et al (2017) Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors Actuators B Chem 241:190–198

    Article  Google Scholar 

  76. Gedda G, Lee CY, Lin YC, Wu HF (2016) Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensors Actuators B Chem 224:396–403

    Article  CAS  Google Scholar 

  77. Liang Q et al (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60:421–428

    Article  CAS  Google Scholar 

  78. Yang X et al (2014) Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron 60:292–298

    Article  CAS  PubMed  Google Scholar 

  79. Kumar A et al (2017) Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators B Chem 242:679–686

    Article  CAS  Google Scholar 

  80. Thambiraj S, Shankaran DR (2016) Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl Surf Sci 390:435–443

    Article  Google Scholar 

  81. Sun X et al (2017) Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. J Photochem Photobiol B Biol 175:219–225

    Article  CAS  Google Scholar 

  82. Xu H et al (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63:6707–6714

    Article  CAS  PubMed  Google Scholar 

  83. Du W et al (2015) Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Sci China Chem 58:863–870

    Article  CAS  Google Scholar 

  84. Shen J et al (2017) Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C Mater Biol Appl 76:856–864

    Article  CAS  PubMed  Google Scholar 

  85. Gu D, Shang S, Yu Q, Shen J (2016) Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci 390:38–42

    Article  CAS  Google Scholar 

  86. Roy P et al (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18:447–458

    Article  CAS  Google Scholar 

  87. Zhang J et al (2015) Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci (4)2:1500002

    Google Scholar 

  88. Liu S et al (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041

    Article  CAS  PubMed  Google Scholar 

  89. Lu W et al (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351–5357

    Article  CAS  PubMed  Google Scholar 

  90. Yang S et al (2014) Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J Mater Chem A 2:8660–8667

    Article  CAS  Google Scholar 

  91. Fan Z et al (2014) Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70:149–156

    Article  CAS  Google Scholar 

  92. Tan Q et al (2019) Crystallization of zinc oxide quantum dots on graphene sheets as an anode material for lithium ion batteries. Cryst Eng Comm 22:320–329

    Article  Google Scholar 

  93. Iravani S, Varma RS (2020) Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett 18:703–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gu C et al (2019) Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 134:8–15

    Article  CAS  PubMed  Google Scholar 

  95. Xie Z et al (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B Environ 229:96–104

    Article  CAS  Google Scholar 

  96. Pan L et al (2016) Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 8:17350–17356

    Article  CAS  PubMed  Google Scholar 

  97. Sun Z, Luo Q, Ran W (2015) Preparation and characterization of amine modified carbon quantum dots from mesoporous carbon. 383–386

    Google Scholar 

  98. Xie YF et al (2019) Metal-mediated gold nanospheres assembled for dark-field microscopy imaging scatterometry. Talanta 201:280–285

    Article  CAS  PubMed  Google Scholar 

  99. Wang J, Gao M, Ho GW (2014) Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution. J Mater Chem A 2:5703–5709

    Article  CAS  Google Scholar 

  100. Guo F et al (2017) Fabrication of a CuBi2O4/g-C3N4 p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation. Inorg Chem Front 4:1714–1720

    Article  CAS  Google Scholar 

  101. Ni T et al (2020) N, Fe-doped carbon dot decorated gear-shaped WO3 for highly efficient UV-Vis-NIR-driven photocatalytic performance. Catal 10:416

    CAS  Google Scholar 

  102. Liu R et al (2014) Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal 4:328–336

    Article  CAS  Google Scholar 

  103. Han Y et al (2014) Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations. ACS Catal 4:781–787

    Article  CAS  Google Scholar 

  104. Han X et al (2013) Synthesis of carbon quantum dots/SiO2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation. Dalt Trans 42:10380–10383

    Article  CAS  Google Scholar 

  105. Wang B et al (2018) Synthesis of catalytically active multielement-doped carbon dots and application for colorimetric detection of glucose. Sens Actuators B Chem 255:2601–2607

    Article  CAS  Google Scholar 

  106. Du J et al (2017) Difunctional Cu-doped carbon dots: catalytic activity and fluorescence indication for the reduction reaction of p-nitrophenol. RSC Adv 7:33929–33936

    Article  CAS  Google Scholar 

  107. Hu S et al (2016) A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl Surf Sci 378:402–407

    Article  CAS  Google Scholar 

  108. Wen X et al (2021) Carbon dots for specific “off-on” sensing of Co2+ and EDTA for in vivo bioimaging. Mater Sci Eng C 123:112022

    Article  CAS  Google Scholar 

  109. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  PubMed  Google Scholar 

  110. Cao L et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, A., Mohan, A. (2023). Photoluminescent Carbon Dots: A New Generation Nanocarbon Material. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_9

Download citation

Publish with us

Policies and ethics