Skip to main content

Recent Progress of Carbonaceous Materials in Third Generation Solar Cells: DSSCs

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

In the world of photovoltaics (PV), carbonaceous materials found to be an emerging candidate for the next generation thin film solar cell devices: organic solar cells (OSCs), perovskite solar cells (PSCs) and dye-sensitized solar cells (DSSCs). With the potential to obtain an extreme low-cost fabrication at higher power conversion efficiency, carbonaceous materials have attracted greater attention since decades ago in the important application in energy conversion systems including solar cells and fuel cells. Moreover, they exhibit higher conductivity, higher specific surface area, high transparency in the entire visible spectrum and high mechanical flexibility. In this chapter, we extant a concise outline on the importance and exciting modifications of carbon (0-dimensional quantum dots to 3-dimensional carbon black) and its derivative materials for the third generation PV cells in an effort to enhance both the device efficiency and its long-term lifetime. Herein, we have also made a brief discussion on the present progress and future challenges of carbonaceous materials in various PV technology including material synthesis, material properties, device structure and device performances that has been established in the recent reported works. To conclude, we summarized the future prospect toward achieving a higher efficient and long-term stable third generation solar cells utilizing the benefits of carbonaceous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiticaru EA, Muraru S, Ioniţă M (2021) From unidimensional carbonaceous materials to multidimensional structures through molecular modeling. Carbon related materials. Springer, Singapore, pp 1–21

    Google Scholar 

  2. Kuddus A, Ismail ABM, Hossain J (2021) Design of a highly efficient CdTe-based dual-heterojunction solar cell with 44% predicted efficiency. Sol Energy 221:488–501

    Article  CAS  Google Scholar 

  3. Kokkonen M, Talebi P, Zhou J, Asgari S, Soomro SA, Elsehrawy F, Halme J, Ahmad S, Hagfeldt A, Hashmi SG (2021) Advanced research trends in dye-sensitized solar cells. J Mater Chem A 9:10527–10545

    Article  CAS  Google Scholar 

  4. Almora O, Baran D, Bazan GC, Berger C, Cabrera CI, Catchpole KR, Erten-Ela S, Guo F, Hauch J, Ho-Baillie AW, Jacobsson TJ (2021) Device performance of emerging photovoltaic materials (version 1). Adv Ene Mater 11:2002774

    Article  CAS  Google Scholar 

  5. Kiruthiga G, Raguram T, Rajni KS, Selvakumar P, Nandhakumar E (2021) DSSCs: a facile and low-cost MgSnO3-based transparent conductive oxides via nebulized spray pyrolysis technique. J Mater Sci: Mater Electr 32:22780–22791

    CAS  Google Scholar 

  6. Landerer D, Sprau C, Ebenhoch B, Colsmann A (2019) New directions for organic thin-film solar cells: stability and performance. In: Advanced micro-and nanomaterials for photovoltaics, pp 195–244

    Google Scholar 

  7. Wei Z, Yan K, Chen H, Yi Y, Zhang T, Long X, Li J, Zhang L, Wang J, Yang S (2014) Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ Sci 7:3326–3333

    Article  CAS  Google Scholar 

  8. Chen H, Wei Z, Yan K, Yi Y, Wang J, Yang S (2014) Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage. Farad Disc 176:271–286

    Article  CAS  Google Scholar 

  9. Rosas-Laverde NM, Pruna A (2021) Carbon nanomaterial-based photovoltaic solar cells. In: Carbon related materials, pp 187–207

    Google Scholar 

  10. Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q (2014) An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Adv 4:52825–52830

    Article  CAS  Google Scholar 

  11. Rajeswari R, Mrinalini M, Prasanthkumar S, Giribabu L (2017) Emerging of inorganic hole transporting materials for perovskite solar cells. Chem Rec 17:681–699

    Article  CAS  PubMed  Google Scholar 

  12. Aitola K, Sveinbjornsson K, Correa-Baena JP, Kaskela A, Abate A, Tian Y, Johansson EMJ, Gratzel M, Kauppinen EI, Hagfeldt A, Boschloo G (2016) Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ Sci 9:461–466

    Article  CAS  Google Scholar 

  13. Becquerel ME et al (1839) Mémoire sur les effets électriques produits sous l’influence des rayons solaires. C R Hebd Seances Acad Sci 9:561–567

    Google Scholar 

  14. Adams WG, Day RE (1877) The action of light on selenium. Proc R Soc Lond 25:113–117

    Article  Google Scholar 

  15. Fritts CE et al (1883) On a new form of selenium cell, and some electrical discoveries made by its use. Am J Sci 156:465–472

    Article  Google Scholar 

  16. Scaff JH, Ohl RS (1947) Development of silicon crystal rectifiers for microwave radar receivers. Bell Syst Tech J 26:1–30

    Article  Google Scholar 

  17. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phy 25:676–677

    Article  CAS  Google Scholar 

  18. Fraas LM et al (2014) History of solar cell development. In: Fraas LM (ed) Low-cost solar electric power. Springer International Publishing, Cham, pp 31–42

    Chapter  Google Scholar 

  19. Bhattacharya S, John S (2019) Beyond 30% conversion efficiency in silicon solar cells: a numerical demonstration. Sci Rep 9:1–15

    Article  Google Scholar 

  20. Czochralski J (1918) Ein neues verfahren zur messung der kristallisationsgeschwindigkeit der metalle. Z Phys Chem 92:219–221

    Article  Google Scholar 

  21. Ramanujam J, Singh UP (2017) Copper indium gallium selenide based solar cells—a review. Energy Environ Sci 10:1306–1319

    Article  CAS  Google Scholar 

  22. Ravindiran M, Praveenkumar C (2018) Status review and the future prospects of CZTS based solar cell—a novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renew Sustain Energy Rev 94:317–329

    Article  CAS  Google Scholar 

  23. Yan J, Saunders BR (2014) Third-generation solar cells: a review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells. RSC Adv 4:43286–43314

    Article  CAS  Google Scholar 

  24. Wan X, Huang Y, Chen Y (2012) Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc Chem Res 45:598–607

    Article  CAS  PubMed  Google Scholar 

  25. Milić JV, Arora N, Dar MI, Zakeeruddin SM, Grätzel M (2018) Reduced graphene oxide as a stabilizing agent in perovskite solar cells. Adv Mater Inter 5:1800416

    Article  Google Scholar 

  26. Litvin AP, Zhang X, Berwick K, Fedorov AV, Zheng W, Baranov AV (2020) Carbon-based interlayers in perovskite solar cells. Renew Sustain Energy Rev 124:109774

    Article  CAS  Google Scholar 

  27. Pitchaiya S, Natarajan M, Santhanam A, Asokan V, Yuvapragasam A, Ramakrishnan VM, Palanisamy SE, Sundaram S, Velauthapillai D (2020) A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab J Chem 13:2526–2557

    Article  CAS  Google Scholar 

  28. Moser J et al (1887) Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung. Monatshefte für Chemie/Chemical Monthly 8:373–373

    Article  Google Scholar 

  29. Tsubomura H, Matsumura M, Nomura Y, Amamiya T (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402–403

    Article  CAS  Google Scholar 

  30. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  31. O’Regan B, Schwartz DT (1996) Efficient dye-sensitized charge separation in a wide-band-gap p-n heterojunction. J Appl Phy 80(8):4749–4754

    Article  Google Scholar 

  32. Ramakrishnan VM, Sandberg S, Muthukumarasamy N, Kvamme K, Balraju P, Agilan S, Velauthapillai D (2019) Microwave assisted solvothermal synthesis of worms-like TiO2 nanostructures in submicron regime as light scattering layers for dye-sensitized solar cells. Mater Lett 236:747–751

    Google Scholar 

  33. Grätzel M, Kalyanasundaram K (1994) Artificial photosynthesis: efficient dye-sensitized photoelectrochemical cells for direct conversion of visible light to electricity. Curr Sci 66:706–714

    Google Scholar 

  34. Grätzel M (2000) Perspectives for dye-sensitized nanocrystalline solar cells. Prog Photovoltaics: Res Appl 8:171–185

    Article  Google Scholar 

  35. Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, Grätzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solids Films 516:4613–4619

    Article  CAS  Google Scholar 

  36. Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26:6210–6237

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed U, Alizadeh M, Abd Rahim N, Shahabuddin S, Ahmed MS, Pandey AK (2018) A comprehensive review on counter electrodes for dye sensitized solar cells: a special focus on Pt-TCO free counter electrodes. Sol Eng 174:1097–1125

    Article  CAS  Google Scholar 

  38. Sima C, Grigoriu C, Antohe S (2010) Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Sol Fil 519(2):595–597

    Article  CAS  Google Scholar 

  39. Mohamad AA et al (2016) Absorbency and conductivity of quasi-solid-state polymer electrolytes for dye-sensitized solar cells: a characterization review. J Pow Sour 329:57–71

    Article  CAS  Google Scholar 

  40. Yanagida M, Han C, Han L (2012) Surface treatment for effective dye adsorption on nanocrystalline TiO2. Jap J Appl Phy 51(10S):10NE16

    Google Scholar 

  41. Suzuka M, Hayashi N, Sekiguchi T, Sumioka K, Takata M, Hayo N, Ikeda H, Oyaizu K, Nishide H (2016) A quasi-solid state DSSC with 10.1% efficiency through molecular design of the charge-separation and-transport. Sci Rep 6:1–7

    Article  Google Scholar 

  42. Babar F, Mehmood U, Asghar H, Mehdi MH, Khan AUH, Khalid H, ul Huda N, Fatima Z (2020) Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: a comprehensive review. Renew Sustain Energy Rev 129:109919

    Article  CAS  Google Scholar 

  43. Yum JH, Baranoff E, Wenger S, Nazeeruddin MK, Grätzel M (2011) Panchromatic engineering for dye-sensitized solar cells. Energy Environ Sci 4:842–857

    Article  CAS  Google Scholar 

  44. Shaikh JS, Shaikh NS, Mali SS, Patil JV, Pawar KK, Kanjanaboos P, Hong CK, Kim JH, Patil PS (2018) Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale 10:4987–5034

    Article  CAS  PubMed  Google Scholar 

  45. Yang Y, Zhao J, Cui C, Zhang Y, Hu H, Xu L, Pan J, Li C, Tang W (2016) Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency. Electroch Acta 196:348–356

    Article  CAS  Google Scholar 

  46. Yang L, Leung WWF (2013) Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv Mater 25:1792–1795

    Article  CAS  PubMed  Google Scholar 

  47. Lan X, Voznyy O, García de Arquer FP, Liu M, Xu J, Proppe AH, Walters G, Fan F, Tan H, Liu M, Yang Z (2016) 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett 16:4630–4634

    Article  CAS  PubMed  Google Scholar 

  48. Xia Q, Zhao H, Du Z, Wang J, Zhang T, Wang J, Lv P (2013) Synthesis and electrochemical properties of MoO3/C composite as anode material for lithium-ion batteries. J Pow Sour 226:107–111

    Article  CAS  Google Scholar 

  49. Dong H, Wu Z, Lu F, Gao Y, El-Shafei A, Jiao B, Ning S, Hou X (2014) Optics–electrics highways: plasmonic silver nanowires@ TiO2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance. Nano Energy 10:181–191

    Article  CAS  Google Scholar 

  50. Ye M, Xin X, Lin C, Lin Z (2011) High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett 11:3214–3220

    Article  CAS  PubMed  Google Scholar 

  51. Zhu G, Pan L, Xu T, Sun Z (2011) CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl Mater Inter 3:3146–3151

    Article  CAS  Google Scholar 

  52. Ahmad MS, Pandey AK, Abd Rahim N (2017) Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew Sustain Energy Rev 77:89–108

    Article  Google Scholar 

  53. Zhang X, Yao J, Li D, Chen X, Wang H, Yeo LY, Friend JR (2014) Self-assembled highly crystalline TiO2 mesostructures for sunlight-driven, pH-responsive photodegradation of dyes. Mater Res Bull 55:13–18

    Article  CAS  Google Scholar 

  54. Zhao W, Fu W, Chen J, Li H, Bala H, Wang X, Sun G, Cao J, Zhang Z (2015) Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties. Thin Sol Fil 577:49–55

    Article  CAS  Google Scholar 

  55. Joshi RK, Schneider JJ (2012) Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. synthesis, arrangement and functionality. Chem Soc Rev 41:5285–5312

    Article  CAS  PubMed  Google Scholar 

  56. Wu WQ, Xu YF, Rao HS, Su CY, Kuang DB (2014) Trilayered photoanode of TiO2 nanoparticles on a 1D–3D nanostructured TiO2-grown flexible Ti substrate for high-efficiency (9.1%) dye-sensitized solar cells with unprecedentedly high photocurrent density. J Phy Chem C 118:16426–16432

    Article  CAS  Google Scholar 

  57. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  PubMed  Google Scholar 

  58. Shiu JW, Lan CM, Chang YC, Wu HP, Huang WK, Diau EWG (2012) Size-controlled anatase titania single crystals with octahedron-like morphology for dye-sensitized solar cells. ACS Nano 6:10862–10873

    Article  CAS  PubMed  Google Scholar 

  59. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  CAS  PubMed  Google Scholar 

  60. Qin L, Liu D, Zhang Y, Zhao P, Zhou L, Liu Y (2018) Comparison of two ways using Ag nanoparticles to improve the performance of dye-sensitized solar cells. Electrochimic Acta 263:426–432

    Article  CAS  Google Scholar 

  61. Senthilkumar N, Arulraj A, Nandhakumar E, Ganapathy M, Vimalan M, Potheher IV (2018) Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell. J Mater Sci: Mater. Electron 29:12744–12753

    CAS  Google Scholar 

  62. Zou M, Liu H, Feng L, Xiong F, Thomas T, Yang M (2017) Effect of nitridation on visible light photocatalytic behavior of microporous (Ag, Ag2O) co-loaded TiO2. Micro Meso Mater 240:137–144

    Article  CAS  Google Scholar 

  63. Kong FT, Dai SY, Wang KJ (2007) Review of recent progress in dye-sensitized solar cells. Adv OptoElectron 1–13

    Google Scholar 

  64. Kongkanand A, Martínez Domínguez R, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett 7:676–680

    Article  CAS  PubMed  Google Scholar 

  65. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  CAS  PubMed  Google Scholar 

  66. Francis MK, Santhosh N, Govindaraj R, Ahmed N, Balaji C (2021) Bifacial DSSC fabricated using low-temperature processed 3D flower like MoS2-high conducting carbon composite counter electrodes. Mater Today Comm 27:102208

    Article  CAS  Google Scholar 

  67. ur Rehman S, Noman M, Khan AD, Saboor A, Ahmad MS, Khan HU (2020) Synthesis of polyvinyl acetate/graphene nanocomposite and its application as an electrolyte in dye sensitized solar cells. Optik 202:163591

    Google Scholar 

  68. Narudin N, Ekanayake P, Soon YW, Nakajima H, Lim CM (2021) Enhanced properties of low-cost carbon black-graphite counter electrode in DSSC by incorporating binders. Sol Energy 225:237–244

    Article  CAS  Google Scholar 

  69. Wang J, Nie X, Wang W, Zhao Z, Li L, Zhang Z (2021) Single-layer graphene-TiO2 nanotubes array heterojunction as photoanode to enhance the photoelectric of DSSCs. Optik 242:167245

    Article  CAS  Google Scholar 

  70. Kim H, Choi H, Hwang S, Kim Y, Jeon M (2012) Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells. Nanosci Res Lett 7:1–4

    Google Scholar 

  71. Lim SM, Moon J, Baek UC, Lee JY, Chae Y, Park JT (2021) Shape-controlled TiO2 nanomaterials-based hybrid solid-state electrolytes for solar energy conversion with a mesoporous carbon electrocatalyst. Nanomater 11:913

    Article  CAS  Google Scholar 

  72. Chen CL, Teng H, Lee YL (2011) In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells. Adv Mater 23:4199–4204

    Article  CAS  PubMed  Google Scholar 

  73. Jayaweera EN, Ranasinghe CSK, Kumara GRA, Wanninayake WMNMB, Senarathne KGC, Tennakone K, Rajapakse RMG, Ileperuma OA (2015) Novel method to improve performance of dye-sensitized solar cells based on quasi-solid gel-polymer electrolytes. Electro Act 152:360–367

    Article  CAS  Google Scholar 

  74. Saidi NM, Goh ZL, Arif HM, Farhana NK, Ramesh S, Ramesh K (2021) Consolidation of ion promoters into quasi solid-state (QSS) polymer electrolytes for dye-sensitized solar cells (DSSCs). Solid State Ionics 363:115592

    Article  CAS  Google Scholar 

  75. Venkatesan S, Obadja N, Chang TW, Chen LT, Lee YL (2014) Performance improvement of gel-and solid-state dye-sensitized solar cells by utilization the blending effect of poly (vinylidene fluoride-co-hexafluropropylene) and poly (acrylonitrile-co-vinyl acetate) co-polymers. J Pow Sour 268:77–81

    Article  CAS  Google Scholar 

  76. Selvanathan V, Yahya R, Alharbi HF, Alharthi NH, Alharthi YS, Ruslan MH, Amin N, Akhtaruzzaman M (2020) Organosoluble starch derivative as quasi-solid electrolytes in DSSC: unravelling the synergy between electrolyte rheology and photovoltaic properties. Sol Energy 197:144–153

    Article  CAS  Google Scholar 

  77. Teo LP, Tiong TS, Buraidah MH, Arof AK (2018) Effect of lithium iodide on the performance of dye sensitized solar cells (DSSC) using poly (ethylene oxide)(PEO)/poly (vinyl alcohol)(PVA) based gel polymer electrolytes. Opt Mater 85:531–537

    Article  CAS  Google Scholar 

  78. Saidi NM, Farhana NK, Ramesh S, Ramesh K (2021) Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of dye-sensitized solar cells (DSSC). Sol Energy 216:111–119

    Article  CAS  Google Scholar 

  79. Bella F, Nair JR, Gerbaldi C (2013) Towards green, efficient and durable quasi-solid dye-sensitized solar cells integrated with a cellulose-based gel-polymer electrolyte optimized by a chemometric DoE approach. RSC Adv 3:15993–16001

    Article  CAS  Google Scholar 

  80. Kumar S, Manikandan VS, Panda SK, Senanayak SP, Palai AK (2020) Probing synergistic outcome of graphene derivatives in solid-state polymer electrolyte and Pt-free counter electrode on photovoltaic performances. Sol Energy 208:949–956

    Article  CAS  Google Scholar 

  81. Dissanayake MAKL, Sarangika HNM, Senadeera GKR, Divarathna HKDWMNR, Ekanayake EMPC (2017) Application of a nanostructured, tri-layer TiO2 photoanode for efficiency enhancement in quasi-solid electrolyte-based dye-sensitized solar cells. J Appl Electrochem 47:1239–1249

    Article  CAS  Google Scholar 

  82. Chowdhury FI, Buraidah MH, Arof AK, Mellander BE, Noor IM (2020) Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Sol Energy 196:379–388

    Article  CAS  Google Scholar 

  83. Venkatesan S, Liu IP, Li CW, Tseng-Shan CM, Lee YL (2019) Quasi-solid-state dye-sensitized solar cells for efficient and stable power generation under room light conditions. ACS Sustain Chem Eng 7:7403–7411

    Article  CAS  Google Scholar 

  84. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa JI, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897

    Article  CAS  Google Scholar 

  85. Harikisun R, Desilvestro H (2011) Long-term stability of dye solar cells. Sol Energy 85:1179–1188

    Article  CAS  Google Scholar 

  86. Asghar MI, Miettunen K, Halme J, Vahermaa P, Toivola M, Aitola K, Lund P (2010) Review of stability for advanced dye solar cells. Energy Environ Sci 3:418–426

    Article  CAS  Google Scholar 

  87. Buzzeo MC, Hardacre C, Compton RG (2006) Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. ChemPhysChem 7:176–180

    Article  CAS  PubMed  Google Scholar 

  88. Wu J, Lan Z, Hao S, Li P, Lin J, Huang M, Fang L, Huang Y (2008) Progress on the electrolytes for dye-sensitized solar cells. Pure Appl Chem 80:2241–2258

    Article  CAS  Google Scholar 

  89. Kato N, Takeda Y, Higuchi K, Takeichi A, Sudo E, Tanaka H, Motohiro T, Sano T, Toyoda T (2009) Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition. Sol Ener Mater Sol Cells 93:893–897

    Article  CAS  Google Scholar 

  90. Wu J, Lan Z, Lin J, Huang M, Li P (2007) Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells. J Pow Sour 173:585–591

    Article  CAS  Google Scholar 

  91. Lee HS, Bae SH, Jo Y, Kim KJ, Jun Y, Han CH (2010) A high temperature stable electrolyte system for dye-sensitized solar cells. Electrochim acta 55:7159–7165

    Article  CAS  Google Scholar 

  92. Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans 20:2655–2666

    Article  Google Scholar 

  93. Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin SM, Grätzel M (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Mater 7:626–630

    Article  CAS  Google Scholar 

  94. Cao Y, Zhang J, Bai Y, Li R, Zakeeruddin SM, Grätzel M, Wang P (2008) Dye-sensitized solar cells with solvent-free ionic liquid electrolytes. J Phy Chem C 112:13775–13781

    Article  CAS  Google Scholar 

  95. Gao F, Wang Y, Zhang J, Shi D, Wang M, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chem Comm 23:2635–2637

    Article  Google Scholar 

  96. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  CAS  PubMed  Google Scholar 

  97. Pradhan SC, Hagfeldt A, Soman S (2018) Resurgence of DSCs with copper electrolyte: a detailed investigation of interfacial charge dynamics with cobalt and iodine based electrolytes. J Mater Chem A 6:22204–22214

    Article  CAS  Google Scholar 

  98. Pashaei B, Shahroosvand H, Abbasi P (2015) Transition metal complex redox shuttles for dye-sensitized solar cells. RSC Adv 5:94814–94848

    Article  CAS  Google Scholar 

  99. Hallinan DT Jr, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525

    Article  CAS  Google Scholar 

  100. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Pow Sour 77:183–197

    Article  CAS  Google Scholar 

  101. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279

    Article  CAS  Google Scholar 

  102. Ileperuma OA et al (2013) Gel polymer electrolytes for dye sensitised solar cells: a review. Mater Tech 28:65–70

    Article  CAS  Google Scholar 

  103. Liu IP, Hung WN, Teng H, Venkatesan S, Lin JC, Lee YL (2017) High-performance printable electrolytes for dye-sensitized solar cells. J Mater Chem A 5:9190–9197

    Article  CAS  Google Scholar 

  104. Seo SJ, Cha HJ, Kang YS, Kang MS (2014) Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells. Electrochimica Acta 145:217–223

    Article  CAS  Google Scholar 

  105. Venkatesan S, Su SC, Hung WN, Liu IP, Teng H, Lee YL (2015) Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application. J Pow Sour 298:385–390

    Article  CAS  Google Scholar 

  106. Venkatesan S, Surya Darlim E, Tsai MH, Teng H, Lee YL (2018) Graphene oxide sponge as nanofillers in printable electrolytes in high-performance quasi-solid-state dye-sensitized solar cells. ACS Appl Mater Inter 10:10955–10964

    Article  CAS  Google Scholar 

  107. Brennan LJ, Byrne MT, Bari M, Gun’ko YK (2011) Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv Ener Mater 1:472–485

    Article  CAS  Google Scholar 

  108. Badenhorst H (2019) A review of the application of carbon materials in solar thermal energy storage. Sol Energy 192:35–68

    Article  CAS  Google Scholar 

  109. Gun J, Kulkarni SA, Xiu W, Batabyal SK, Sladkevich S, Prikhodchenko PV, Gutkin V, Lev O (2012) Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells. Electrochem Comm 19:108–110

    Article  CAS  Google Scholar 

  110. Wang YC, Huang KC, Dong RX, Liu CT, Wang CC, Ho KC, Lin JJ (2012) Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. J Mater Chem 22:6982–6989

    Article  CAS  Google Scholar 

  111. Mohan VM, Murakami K, Kono A, Shimomura M (2013) Poly (acrylonitrile)/activated carbon composite polymer gel electrolyte for high efficiency dye sensitized solar cells. J Mater Chem A 1:7399–7407

    Article  CAS  Google Scholar 

  112. Chen PY, Lee CP, Vittal R, Ho KC (2010) A quasi solid-state dye-sensitized solar cell containing binary ionic liquid and polyaniline-loaded carbon black. J Pow Sour 195:3933–3938

    Article  CAS  Google Scholar 

  113. Lee CP, Chen PY, Vittal R, Ho KC (2010) Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black. J Mater Chem 20:2356–2361

    Article  CAS  Google Scholar 

  114. Usui H, Matsui H, Tanabe N, Yanagida S (2004) Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes. J Photochem Photo A: Chem 164:97–101

    Article  CAS  Google Scholar 

  115. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Grätzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:A2255

    Article  CAS  Google Scholar 

  116. Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura JI, Murata K (2003) High-performance carbon counter electrode for dye-sensitized solar cells. Sol Ener Mater Sol Cell 79(4):459–469

    Article  CAS  Google Scholar 

  117. Chen J, Li K, Luo Y, Guo X, Li D, Deng M, Huang S, Meng Q (2009) A flexible carbon counter electrode for dye-sensitized solar cells. Carbon 47:2704–2708

    Article  CAS  Google Scholar 

  118. Lee WJ, Ramasamy E, Lee DY, Song JS (2009) Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl Mater Inter 1(6):1145–1149

    Article  CAS  Google Scholar 

  119. Huang KC, Wang YC, Dong RX, Tsai WC, Tsai KW, Wang CC, Chen YH, Vittal R, Lin JJ, Ho KC (2010) A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. J Mater Chem 20(20):4067–4073

    Article  CAS  Google Scholar 

  120. Wan L, Wang S, Wang X, Dong B, Xu Z, Zhang X, Yang B, Peng S, Wang J, Xu C (2011) Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Sol Sta Sci 13:468–475

    Article  CAS  Google Scholar 

  121. Roy-Mayhew JD, Boschloo G, Hagfeldt A, Aksay IA (2012) Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells. ACS Appl Mater Interf 4:2794–2800

    Article  CAS  Google Scholar 

  122. Choi HJ, Shin JE, Lee GW, Park NG, Kim K, Hong SC (2010) Effect of surface modification of multi-walled carbon nanotubes on the fabrication and performance of carbon nanotube based counter electrodes for dye-sensitized solar cells. Curr Appl Phys 10:165-S167

    Article  Google Scholar 

  123. Zhang Y, Yun S, Wang Z, Zhang Y, Wang C, Arshad A, Han F, Si Y, Fang W (2020) Highly efficient bio-based porous carbon hybridized with tungsten carbide as counter electrode for dye-sensitized solar cell. Ceram Inter 46(10):15812–15821

    Article  CAS  Google Scholar 

  124. Ma X, Elbohy H, Sigdel S, Lai C, Qiao Q, Fong H (2016) Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells. RSC Adv 6(14):11481–11487

    Article  CAS  Google Scholar 

  125. Chung DY, Son YJ, Yoo JM, Kang JS, Ahn CY, Park S, Sung YE (2017) Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications. ACS App Mater Inter 9(47):41303–41313

    Article  CAS  Google Scholar 

  126. Wang Z, Yun S, Wang X, Wang C, Si Y, Zhang Y, Xu H (2019) Aloe peel-derived honeycomb-like bio-based carbon with controllable morphology and its superior electrochemical properties for new energy devices. Ceram Internat 45(4):4208–4218

    Article  CAS  Google Scholar 

  127. Wang X, Yun S, Fang W, Zhang C, Liang X, Lei Z, Liu Z (2018) Layer-stacking activated carbon derived from sunflower stalk as electrode materials for high-performance supercapacitors. ACS Sustain Chem Eng 6(9):11397–11407

    Article  CAS  Google Scholar 

  128. Younas M, Baroud TN, Gondal MA, Dastageer MA, Giannelis EP (2020) Highly efficient, cost-effective counter electrodes for dye-sensitized solar cells (DSSCs) augmented by highly mesoporous carbons. J Pow Sour 468:228359

    Article  CAS  Google Scholar 

  129. Cha SM, Nagaraju G, Sekhar SC, Bharat LK, Yu JS (2018) Fallen leaves derived honeycomb-like porous carbon as a metal-free and low-cost counter electrode for dye-sensitized solar cells with excellent tri-iodide reduction. J Colloid Inter Sci 513:843–851

    Article  CAS  Google Scholar 

  130. Wang G, Wang D, Kuang S, Xing W, Zhuo S (2014) Hierarchical porous carbon derived from rice husk as a low-cost counter electrode of dye-sensitized solar cells. Renew Energy 63:708–714

    Article  CAS  Google Scholar 

  131. Li K, Luo Y, Yu Z, Deng M, Li D, Meng Q (2009) Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem Comm 11(7):1346–1349

    Article  CAS  Google Scholar 

  132. Shao LL, Chen M, Yuan ZY (2014) Hierarchical porous carbons as a metal-free electrocatalyst of triiodide reduction for dye-sensitized solar cells. J Pow Sour 272:1091–1099

    Article  CAS  Google Scholar 

  133. Kumar R, Nemala SS, Mallick S, Bhargava P (2017) Synthesis and characterization of carbon based counter electrode for dye sensitized solar cells (DSSCs) using sugar free as a carbon material. Sol Energy 144:215–220

    Article  CAS  Google Scholar 

  134. Martínez-Muíño A, Rana M, Vilatela JJ, Costa RD (2020) Origin of the electrocatalytic activity in carbon nanotube fiber counter-electrodes for solar-energy conversion. Nano Adv 2:4400–4409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selvakumar Pitchaiya or M. R. Venkatraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eswaramoorthy, N., Syamsai, R., Nallusamy, S., Pitchaiya, S., Venkatraman, M.R. (2023). Recent Progress of Carbonaceous Materials in Third Generation Solar Cells: DSSCs. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_7

Download citation

Publish with us

Policies and ethics