Skip to main content

Fabrication of Graphene, Graphene Oxide, Reduced Graphene Oxide, Fullerene (C60) and Carbon Nanotube Thin Film By Langmuir–Blodgett Method

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 756 Accesses

Abstract

Carbon being one of the most abundant elements on earth exists in different allotropes of different chemical and physical properties. It is found as graphite and diamond in nature. With the discovery of fullerene as nanomaterial in 1985, carbon materials have gained tremendous research interest. Thereafter, different forms of carbon-based nanostructures, e.g., graphene, carbon nanotubes, etc., have been developed and their remarkable obsessions in various modern applications have triggered this class of materials into a new horizon. In most of the device fabrication processes, thin films of these carbonaceous materials are generally required. Though various physical deposition processes exist to synthesize thin films of these carbonaceous materials, their industrial implications are limited due to cost, complexity of the process, etc. Instead, chemical processes are adopted to prepare them. Langmuir–Blodgett (LB) technique being one of the easy, cost-effective to synthesize carbonaceous thin film has been widely accepted by the researchers. In addition, this particular process includes several parameters to vary properties, e.g., porosity, pore size, texture, orientation of the thin film. In this chapter, basic principle of thin film fabrication using LB technique, along with parameters influencing quality of the thin films, has been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang X, Zhi LJ, Tsao N, Tomovic Z, Li JL, Mullen K (2008) Angew Chem, Int Ed 47:2990–2992

    Google Scholar 

  2. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  4. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Science 312:1191–1196

    Article  CAS  PubMed  Google Scholar 

  5. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Nano Lett 9:30–35

    Article  CAS  PubMed  Google Scholar 

  6. Li D, Windl W, Padture NP (2009) Adv Mater 21:1243–1246

    Article  Google Scholar 

  7. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Nature 457:706–710

    Article  CAS  PubMed  Google Scholar 

  8. Zheng QB, Ip WH, Lin XY, Yousefi N, Yeung KK, Li ZG, Kim JK (2011) ACS Nano 5:6039–6051

    Article  CAS  PubMed  Google Scholar 

  9. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  10. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    Article  CAS  PubMed  Google Scholar 

  11. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Science 305:1273–1276

    Article  CAS  PubMed  Google Scholar 

  12. Brownson DAC, Banks CE (2012) RSC Adv 2(12):5385–5389

    Article  CAS  Google Scholar 

  13. Huang Y, Dong X, Shi Y, Li C-M, Li L-J, Chen P (2010) Nanoscale 2(8):1485–1488

    Article  CAS  PubMed  Google Scholar 

  14. Solanki S, Soni A, Pandey MK, Biradar A, Sumana G (2018) ACS Appl Mater Interfaces 10(3):3020–3028

    Article  CAS  PubMed  Google Scholar 

  15. Aboutalebi SH, Gudarzi MM, Zheng QB, Kim J-K (2011) Adv Funct Mater 21:2978–2988

    Article  CAS  Google Scholar 

  16. Solanki S, Soni A, Agrawal VV, Pandey MK (2021) G. Sumana. Langmuir 37(29):8705–8713

    Article  CAS  PubMed  Google Scholar 

  17. Zheng Q, Ip WH, Lin X, Yousefi N, Yeung KK, Li Z, Kim J-K (2011) ACS Nano 5:6039–6051

    Google Scholar 

  18. Cote LJ, Kim F, Huang J (2009) J Am Chem Soc 131:1043–1049

    Article  CAS  PubMed  Google Scholar 

  19. Kim J, Kim F, Huang J (2010) Mater Today 13:28–38

    Article  CAS  Google Scholar 

  20. Kim J, Cote LJ, Kim F, Huang J (2010) J Am Chem Soc 132:260–267

    Article  CAS  PubMed  Google Scholar 

  21. Silverberg GJ, Vecitis CD (2017) Langmuir 33:9880–9888

    Article  CAS  PubMed  Google Scholar 

  22. Ahmadivand A, Semmlinger M, Dong LL, Gerislioglu B, Nordlander P, Halas NJ (2019) Nano Lett 19:605–611

    Article  CAS  PubMed  Google Scholar 

  23. Chen ZD, Wang HY, Wang YG, Lv RD, Yang XY, Wang J, Li L, Ren W (2019) Carbon 144:737–744

    Article  CAS  Google Scholar 

  24. Kim J, Kim KS, Ryu SY, Kim S (2012) Opt Express 20:12966–12974

    Article  PubMed  Google Scholar 

  25. Lv RD, Chen ZD, Liu SC, Wang J, Li YF, Wang YG, Wang YS (2019) Opt Express 27:6348–6356

    Article  CAS  PubMed  Google Scholar 

  26. Song SJ, Shin YC, Lee HU, Kim B, Han DW, Lim D (2018) Nanomaterials 8:408

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiang G, Miao L, Yi J, Huang B, Peng W, Zou Y, Huang H, Hu W, Zhao C, Wen S (2017) Appl Phys Lett 110:842

    Google Scholar 

  28. Jhon YI, Koo J, Anasori B, Seo M, Lee JH, Gogotsi Y, Jhon YM (2017) Adv Mater 29:1702496

    Article  Google Scholar 

  29. Wei J, Qiu J, Li L, Ren L, Zhang X, Chaudhuri J, Wang S (2012) Nanotechnology 23:335707

    Article  PubMed  Google Scholar 

  30. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) J Biomed Mater Res 29:1517–1524

    Article  CAS  PubMed  Google Scholar 

  31. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Biomaterials 20:573–588

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Lv RD, Wang J, Chen ZD, Wang HZ, Liu SC, Ren W, Liu WJ, Wang YG (2019) Nanomaterials 9:315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang YG, Chen HR, Wen XM, Hsieh WF, Tang J (2011) Nanotechnol 22:455203

    Article  Google Scholar 

  34. Sirota M, Galun E, Sashchiuk A, Krupkin V, Glushko A, Lifshitz E (2003) Proc SPIE Int Soc Opt Eng 4970:53–60

    CAS  Google Scholar 

  35. Girard-Egrot AP, Morelis RM, Coulet PR (1993) Langmuir 9:3107–3110

    Article  CAS  Google Scholar 

  36. Mirley CL, Koberstein JT (1995) Langmuir 11:2837–2839

    Article  CAS  Google Scholar 

  37. Periasamy V, Yieng NJ, Majid WHA (2013) Adv Sci Lett 19:179–182

    Article  CAS  Google Scholar 

  38. Petty MC (1996) Langmuir-Blodgett films: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Periasamy V (2012) Adv Mater Res 535–537:1119–1125

    Article  Google Scholar 

  40. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  41. Wilson RJ, Meijer G, Bethune DS, Johnson RD, Chambliss DD, de Vries MS, Hunziker HE, Wendt HR (1990) Nature 348:621–622

    Article  CAS  Google Scholar 

  42. Kroto HW (1987) Nature 329:529–531

    Article  CAS  Google Scholar 

  43. Milliken J, Dominguez DD, Nelson HH, Barger WR (1992) Chem Mater 4:252

    Article  CAS  Google Scholar 

  44. Geng J, Zhou W, Skelton P, Yue W, Kinloch IA, Windle AH, Johnson BFG (2008) J Am Chem Soc 130:2527–2534

    Article  CAS  PubMed  Google Scholar 

  45. Amantana A, Moulton HM, Cate ML, Reddy MT, Whitehead T, Hassinger JN, Youngblood DS, Iversen PL (2007) Bioconjugate Chem 18:1325–1331

    Article  CAS  Google Scholar 

  46. Li H, Tee BC-K, Cha JJ, Cui Y, Chung JW, Lee SY, Bao Z (2012) J Am Chem Soc 134:2760–2765

    Article  CAS  PubMed  Google Scholar 

  47. Dubois D, Kadish KM, Flanagan S, Haufler RE, Chibante LPF, Wilson LJ (1991) J Am Chem Soc 113:7773

    Article  CAS  Google Scholar 

  48. Allemand P-M, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL (1991) J Am Chem Soc 113:1050

    Article  CAS  Google Scholar 

  49. Ajie H, Alvarez MM, Anz SJ, Beck RD, Diederich F, Fostiropoulos K, Huffman DR, Kratechmer W, Rubin Y, Schriver KE, Senshamna D, Whetten RL (1990) J Phys Chem 94:8630

    Article  CAS  Google Scholar 

  50. Xie Q, Perez-Cordero E, Echegoyen L (1992) J Am Chem Soc 114:3978

    Article  CAS  Google Scholar 

  51. Zhou F, Jehoulet C, Bard AJ (1997) J Am Chem SOCInter (in press)

    Google Scholar 

  52. Koh W, Dubois D, Kutner W, Jones MT, Kadish KM (1992) J Phys Chem 96:4163

    Article  CAS  Google Scholar 

  53. Avasthi S, Lee S, Loo Y-L, Sturm JC (2011) Adv Mater 25:5762–5766

    Article  Google Scholar 

  54. Chen K, Caldwell WB, Mirkin CA (1993) J Am Chem Soc 115:1193–1194

    Article  CAS  Google Scholar 

  55. Menon SK, Lethakumary B, Vasudevan K, Mohanan P (2002) Phys B 323:235–236

    Article  Google Scholar 

  56. Sano M, Kamino A, Okamura J, Shinkai S (2001) Langmuir 17:5125

    Article  CAS  Google Scholar 

  57. Kędzierski K, Rytel K, Barszcz B, Gronostaj A, Majchrzycki L, Wrobel D (2018) Chem Phys Lett 712:144–148

    Article  Google Scholar 

  58. Luccio TD, Antolini F, Aversa P, Scalia G, Tapfer L (2004) Carbon 42:1119

    Article  Google Scholar 

  59. Antolini F, Luccio TD, Serra E, Aversa P, Tapfer L, Sangiorgi S (2006) Surf Interface Anal 38:1285–1290

    Article  CAS  Google Scholar 

  60. Liu Y, Kumar S (2014) ACS Appl Mater Interfaces 6:6069–6087

    Article  CAS  PubMed  Google Scholar 

  61. Dresselhaus M, Dresselhaus G, Eklund P, Saito R (1998) Phys World 11:33

    Article  CAS  Google Scholar 

  62. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Science 294:1317

    Article  CAS  PubMed  Google Scholar 

  63. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Appl Phys Lett 73:2447

    Article  CAS  Google Scholar 

  64. Armitage NP, Gabriel J-CP, Gruner G (2004) J Appl Phys 95:3228

    Article  CAS  Google Scholar 

  65. Bird CL, Kuhn AT (1981) Chem Soc Rev 10:49

    Article  CAS  Google Scholar 

  66. Snow ES, Novak JP, Campbell PM, Park D (2003) Appl Phys Lett 82:2145

    Article  CAS  Google Scholar 

  67. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801

    Article  CAS  PubMed  Google Scholar 

  68. Fu Y-R, Zhang S, Chen M, Qian D-J (2012) Thin Solid Film 520:6994–7001

    Article  CAS  Google Scholar 

  69. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Langmuir 20:11594

    Article  CAS  PubMed  Google Scholar 

  70. Wong N, Kam S, Dai H (2005) J Am Chem Soc 127:6021

    Article  Google Scholar 

  71. Liu AR, Qian DJ, Wakayama T, Nakamura C, Miyake J (2006) Colloids Surf A 284–285:485–489

    Article  Google Scholar 

Download references

Acknowledgements

NH wants to thank UGC for her fellowship during execution of this work.

Author information

Authors and Affiliations

Authors

Contributions

AM and NH have equal contributions in this chapter.

Corresponding author

Correspondence to Chandan Kumar Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallick, A., Haldar, N., Nandy, S., Ghosh, C.K. (2023). Fabrication of Graphene, Graphene Oxide, Reduced Graphene Oxide, Fullerene (C60) and Carbon Nanotube Thin Film By Langmuir–Blodgett Method. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_2

Download citation

Publish with us

Policies and ethics