Skip to main content

Carbon Composites with Polymer Materials for Gas Sensing Application

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 702 Accesses

Abstract

Developing gas sensors using carbon materials can be cost-effective and ecofriendly in comparison with metal oxides and chalcogenides. The carbon materials are found to have high response, recovery rates, as well as good reproducibility. The incorporation of conductive carbon materials into polymers results in high-performing gas sensors at room temperature. The combined contributions of carbon matrix and polymer are described by means of several examples highlighting the most significant achievements in the field of sensing. The combination of polymers with carbon nanomaterials is opening up exciting areas of research for gas sensors owing to their biocompatibility, excellent selectivity, and sensitivity. Among carbon materials, graphene, carbon nanotubes, carbon quantum dots, etc., are usually explored for their inherent properties like mechanical strength, high surface area, and electronic conductivity. There will be emphasis on specific synthesis of polymer composite with carbon, followed by stability, and selectivity of gas molecules by various composites materials in sensing platform. Sensing characteristics of gas sensors could be improved by the integration of smart nanomaterials or dopants, defects or structural changes, or functionalization in polymers chains. In this book chapter, the recent advances of carbon composites with polymer, their gas sensing properties and factors governing the gas sensing applications will be discussed extensively. Insights will be given for future perspectives of carbon composites with polymers materials applied in gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolhe PS, Koinkar PM, Maiti N, Sonawane KM (2017) Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties. Physica B 524:90–96. https://doi.org/10.1016/j.physb.2017.07.056

    Article  CAS  Google Scholar 

  2. Jang Y, Kim SM, Spinks GM, Kim SJ (2020) Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv Mater 32:1902670. https://doi.org/10.1002/ADMA.201902670

    Article  CAS  Google Scholar 

  3. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280. https://doi.org/10.1039/C3EE43525C

    Article  CAS  Google Scholar 

  4. Su PG, Yang LY (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens Actuators B Chem 223:202–208. https://doi.org/10.1016/j.snb.2015.09.091

    Article  CAS  Google Scholar 

  5. Xu X, Chen Y, Zhang G, Ma S, Lu Y, Bian H, Chen Q (2017) Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J Alloy Compd 703:572–579. https://doi.org/10.1016/j.jallcom.2017.01.348

    Article  CAS  Google Scholar 

  6. Ahuja RT, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B Chem 136:275–286. https://doi.org/10.1016/j.snb.2008.09.014

    Article  CAS  Google Scholar 

  7. Yang Y, Li S, Yang W, Yuan W, Xu J, Jiang Y (2014) In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl Mater Interfaces 6:13807–13814. https://doi.org/10.1021/AM5032456

    Article  CAS  PubMed  Google Scholar 

  8. Umar A, Ibrahim AA, Algadi H, Albargi H, Alsairi MA, Wang Y, Akbar S (2021) Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites. Ceram Int 47:25696–25707. https://doi.org/10.1016/J.CERAMINT.2021.05.296

    Article  CAS  Google Scholar 

  9. Zhang W, Cao S, Wu Z, Zhang M, Cao Y, Guo J, Zhong F, Duan H, Jia D (2019) High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering. Sensors 20:149. https://doi.org/10.3390/S20010149

  10. Lucci M, Reale A, di Carlo A, Orlanducci S, Tamburri E, Terranova ML, Davoli I, di Natale C, D’Amico A, Paolesse R (2006) Optimization of a NOx gas sensor based on single walled carbon nanotubes. Sens Actuators B Chem 118:226–231. https://doi.org/10.1016/j.snb.2006.04.027

    Article  CAS  Google Scholar 

  11. Lee SW, Lee W, Lee D, Choi Y, Kim W, Park J, Lee JH, Lee G, Yoon DS (2018) A simple and disposable carbon adhesive tape-based NO2 gas sensor. Sens Actuators B Chem 266:485–492. https://doi.org/10.1016/j.snb.2018.03.161

    Article  CAS  Google Scholar 

  12. An KH, Jeong SY, Hwang HR, Lee YH (2004) Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv Mater 16:1005–1009. https://doi.org/10.1002/adma.200306176

    Article  CAS  Google Scholar 

  13. Ram MK, Yavuz O, Aldissi M (2005) NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth Met 151:77–84. https://doi.org/10.1016/j.synthmet.2005.03.021

    Article  CAS  Google Scholar 

  14. Kadhim GA, Suhail H (2019) The nanocomposite film of polypyrrole and functionalized single walled carbon nanotubes as gas sensor of NO2 oxidizing gas *Address for Correspondence. www.tnsroindia.org.in

  15. Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H (2019) A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens Actuators B Chem 295:86–92. https://doi.org/10.1016/j.snb.2019.05.065

    Article  CAS  Google Scholar 

  16. Agarwal PB, Alam B, Sharma DS, Sharma S, Mandal S, Agarwal A (2018) Flexible NO2 gas sensor based on single-walled carbon nanotubes on polytetrafluoroethylene substrates. Flexible Printed Electron 3:035001. https://doi.org/10.1088/2058-8585/AACC8F

    Article  Google Scholar 

  17. Mangu R, Rajaputra S, Singh VP (2011) MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 22. https://doi.org/10.1088/0957-4484/22/21/215502

  18. Zhang W, Cao S, Wu Z, Zhang M, Cao Y, Guo J, Zhong F, Duan H, Jia D (2020) High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering. Sensors (Switzerland) 20. https://doi.org/10.3390/s20010149

  19. Chen J, Tsubokawa N (200) Novel gas sensor from polymer-grafted carbon black: vapor response of electric resistance of conducting composites prepared from poly(ethylene-block-ethylene oxide)-grafted carbon black

    Google Scholar 

  20. Yuan W, Huang L, Zhou Q, Shi G (2014) Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers. ACS Appl Mater Interfaces 6:17003–17008. https://doi.org/10.1021/am504616c

    Article  CAS  PubMed  Google Scholar 

  21. Dunst K, Jurków D, Jasiński P (2016) Laser patterned platform with PEDOT-graphene composite film for NO2 sensing. Sens Actuators B Chem 229:155–165. https://doi.org/10.1016/j.snb.2016.01.093

    Article  CAS  Google Scholar 

  22. Hang NT, Zhang S, Yang W (2017) Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sens Actuators B Chem 248:940–948. https://doi.org/10.1016/j.snb.2017.01.199

    Article  CAS  Google Scholar 

  23. Dunst K, Jurków D, Jasiński P (2016) Laser patterned platform with PEDOT–graphene composite film for NO2 sensing. Sens Actuators B Chem 229:155–165. https://doi.org/10.1016/J.SNB.2016.01.093

    Article  CAS  Google Scholar 

  24. Dunst KJ, Trzciński K, Scheibe B, Sawczak M, Jasiński P (2018) Study of the NO2 sensing mechanism of PEDOT-RGO film using in situ Raman Spectroscopy. Sens Actuators B Chem 260:1025–1033. https://doi.org/10.1016/j.snb.2018.01.089

    Article  CAS  Google Scholar 

  25. Park CH, Schroeder V, Kim BJ, Swager TM (2018) Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sensors 3:2432–2437. https://doi.org/10.1021/ACSSENSORS.8B00987/SUPPL_FILE/SE8B00987_SI_001.PDF

    Article  CAS  Google Scholar 

  26. Chatterjee S, Castro M, Feller JF (2015) Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sens Actuators B Chem 220:840–849. https://doi.org/10.1016/J.SNB.2015.06.005

    Article  CAS  Google Scholar 

  27. Chiou JC, Wu CC, Lin TM (2019) Sensitivity enhancement of acetone gas sensor using polyethylene glycol/multi-walled carbon nanotubes composite sensing film with thermal treatment. Polymers 11. https://doi.org/10.3390/POLYM11030423

  28. Xie H, Yang Q, Sun X, Yang J, Huang Y (2006) Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sens Actuators B Chem 113:887–891. https://doi.org/10.1016/J.SNB.2005.03.116

    Article  CAS  Google Scholar 

  29. Rattanabut C, Wongwiriyapan W, Muangrat W, Bunjongpru W, Phonyiem M, Song YJ (2018) Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection. Japanese J Appl Phys 57:04FP10. https://doi.org/10.7567/JJAP.57.04FP10/XML

  30. Wang X, Ugur A, Goktas H, Chen N, Wang M, Lachman N, Kalfon-Cohen E, Fang W, Wardle BL, Gleason KK (2016) Room temperature resistive volatile organic compound sensing materials based on a hybrid structure of vertically aligned carbon nanotubes and conformal oCVD/iCVD polymer coatings. ACS Sensors 1:374–383. https://doi.org/10.1021/ACSSENSORS.5B00208/SUPPL_FILE/SE5B00208_SI_001.PDF

    Article  CAS  Google Scholar 

  31. Pirsa S, Alizadeh N (2010) Design and fabrication of gas sensor based on nanostructure conductive polypyrrole for determination of volatile organic solvents. Sens Actuators, B Chem 147:461–466. https://doi.org/10.1016/J.SNB.2010.03.026

    Article  CAS  Google Scholar 

  32. Kessick R, Tepper G (2006) Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds. Sens Actuators, B Chem 117:205–210. https://doi.org/10.1016/J.SNB.2005.11.045

    Article  CAS  Google Scholar 

  33. Kim YS, Ha SC, Yang Y, Kim YJ, Cho SM, Yang H, Kim YT (2005) Portable electronic nose system based on the carbon black–polymer composite sensor array. Sens Actuators, B Chem 108:285–291. https://doi.org/10.1016/J.SNB.2004.11.067

    Article  CAS  Google Scholar 

  34. Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24:1–10. https://doi.org/10.1007/S10965-017-1195-6/FIGURES/11

    Article  CAS  Google Scholar 

  35. Liu SF, Moh LCH, Swager TM (2015) Single-walled carbon nanotube-metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds. Chem Mater 27:3560–3563. https://doi.org/10.1021/ACS.CHEMMATER.5B00153/SUPPL_FILE/CM5B00153_SI_001.PDF

    Article  CAS  Google Scholar 

  36. Fan Q, Qin Z, Villmow T, Pionteck J, Pötschke P, Wu Y, Voit B, Zhu M (2011) Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks. Sens Actuators, B Chem 156:63–70. https://doi.org/10.1016/J.SNB.2011.03.073

    Article  CAS  Google Scholar 

  37. Daneshkhah A, Shrestha S, Agarwal M, Varahramyan K (2015) Poly(vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath. Sens Actuators, B Chem 221:635–643. https://doi.org/10.1016/J.SNB.2015.06.145

    Article  CAS  Google Scholar 

  38. Debataraja A, Widia D, Yuliarto B (2017) Investigation of nanostructured SnO2 synthesized with polyol technique for CO gas sensor applications. Procedia Eng 170:60–64. https://doi.org/10.1016/j.proeng.2017.03.011

    Article  CAS  Google Scholar 

  39. Moon CS, Kim HR, Auchterlonie G, Drennan J, Lee JH (2008) Highly sensitive and fast responding CO sensor using SnO2 nanosheets. Sens Actuators, B Chem 131:556–564. https://doi.org/10.1016/J.SNB.2007.12.040

    Article  CAS  Google Scholar 

  40. Mahajan S, Jagtap S (2020) Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review. Appl Mater Today 18:100483. https://doi.org/10.1016/J.APMT.2019.100483

    Article  Google Scholar 

  41. Basharnavaz H, Habibi-Yangjeh A, Pirhashemi M (2020) Graphitic carbon nitride as a fascinating adsorbent for toxic gases: a mini-review. Chem Phys Lett 754:137676. https://doi.org/10.1016/J.CPLETT.2020.137676

    Article  CAS  Google Scholar 

  42. Roy A, Ray A, Sadhukhan P, Naskar K, Lal G, Bhar R, Sinha C, Das S (2018) Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): room temperature resistive carbon monoxide (CO) sensor. Synth Met 245:182–189. https://doi.org/10.1016/J.SYNTHMET.2018.08.024

    Article  CAS  Google Scholar 

  43. Yang Z, Zhang D, Wang D (2020) Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sens Actuators, B Chem 304:127369. https://doi.org/10.1016/J.SNB.2019.127369

    Article  CAS  Google Scholar 

  44. Nasresfahani S, Zargarpour Z, Sheikhi MH, Nami Ana SF (2020) Improvement of the carbon monoxide gas sensing properties of polyaniline in the presence of gold nanoparticles at room temperature. Synthetic Metals 265:116404. https://doi.org/10.1016/J.SYNTHMET.2020.116404

  45. Narayana A, Bhat SA, Fathima A, Lokesh SV, Surya SG, Yelamaggad CV (2020) Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Adv 10:13532–13542. https://doi.org/10.1039/D0RA00478B

  46. Barriault M, Alexander I, Tasnim N, O’Brien A, Najjaran H, Hoorfar M (2021) Classification and regression of binary hydrocarbon mixtures using single metal oxide semiconductor sensor with application to natural gas detection. Sens Actuators, B Chem 326:129012. https://doi.org/10.1016/J.SNB.2020.129012

    Article  CAS  Google Scholar 

  47. Seshadri A, Vedula G, Naguib HE (2020) Scalable sensing of hydrocarbon pollutants using soluble chemiresistive polymer composites. Mater Chem Phys 239:122119. https://doi.org/10.1016/J.MATCHEMPHYS.2019.122119

    Article  CAS  Google Scholar 

  48. Torad NL, Ding B, El-Said WA, El-Hady DA, Alshitari W, Na J, Yamauchi Y, Zhang X (2020) MOF-derived hybrid nanoarchitectured carbons for gas discrimination of volatile aromatic hydrocarbons. Carbon 168:55–64. https://doi.org/10.1016/J.CARBON.2020.05.013

    Article  CAS  Google Scholar 

  49. Ichi Shimizu K, Chinzei I, Nishiyama H, Kakimoto S, Sugaya S, Matsutani W, Satsuma A (2009) Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sens Actuat B: Chem 141:410–416. https://doi.org/10.1016/J.SNB.2009.06.048

  50. Zhu Y, Yu L, Wu D, Lv W, Wang L (2021) A high-sensitivity graphene ammonia sensor via aerosol jet printing. Sens Actuators, A 318:112434. https://doi.org/10.1016/J.SNA.2020.112434

    Article  CAS  Google Scholar 

  51. Gautam M, Jayatissa AH (2012) Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron 78:159–165. https://doi.org/10.1016/J.SSE.2012.05.059

    Article  CAS  Google Scholar 

  52. Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Siu-Wai Kong E, Wei H, Zhang Y (2012) Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22:22488–22495. https://doi.org/10.1039/C2JM34340A

  53. Panes-Ruiz LA, Shaygan M, Fu Y, Liu Y, Khavrus V, Oswald S, Gemming T, Baraban L, Bezugly V, Cuniberti G (2018) Toward highly sensitive and energy efficient ammonia gas detection with modified single-walled carbon nanotubes at room temperature. ACS Sensors 3:79–86. https://doi.org/10.1021/ACSSENSORS.7B00358/SUPPL_FILE/SE7B00358_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  54. Xu LH, Wu TM (2020) Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature. J Mater Sci: Mater Electron 31:7276–7283. https://doi.org/10.1007/S10854-020-03299-6

    Article  CAS  Google Scholar 

  55. Pang Z, Yildirim E, Pasquinelli MA, Wei Q (2021) Ammonia sensing performance of polyaniline-coated polyamide 6 nanofibers. ACS Omega 6:8950–8957. https://doi.org/10.1021/ACSOMEGA.0C06272/SUPPL_FILE/AO0C06272_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Tanaya Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahendraprabhu, K., Elango Balaji, T., Das, P., Das, H.T. (2023). Carbon Composites with Polymer Materials for Gas Sensing Application. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_15

Download citation

Publish with us

Policies and ethics