Skip to main content

Carbonaceous Nanostructures-Based Photocatalysts for Sustainable H2 Production

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

One of the most successful approaches for sustainable energy and environmental challenges is photocatalytic hydrogen generation via solar water splitting. Photocatalytic water splitting has sparked much interest in recent era, and persistent numerous attempts have been put forward to build an efficient water splitting system. This chapter starts with an introduction to the fundamentals of photocatalytic hydrogen generation, followed by the summarization of most recent advancements of diverse heterostructure carbonaceous materials. Based on the light absorption properties, this chapter primarily emphasis the photocatalytic hydrogen production of different carbonaceous nanostructure materials which are categorized dimensionally on the basics of zero-dimensional (OD), one-dimensional (1D) and two-dimensional (2D). Additionally, the chapter focuses on the advances achieved in carbonaceous photocatalyst systems based on Z-scheme systems and hybrid systems. Finally, we conclude with some views on the future of photocatalytic water splitting based on carbonaceous nanostructure material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadanandam G, Lalitha K, Kumari VD, Shankar MV, Subrahmanyam M (2013) Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Inter J Hydr Energ 23:9655–9664

    Article  Google Scholar 

  2. Kumar DP, Reddy NL, Srinivas B, Durgakumari V, Roddatis V, Bondarchuk O, Karthik M, Ikuma Y, Shankar MV (2016) Stable and active CuxO/TiO2 nanostructured catalyst for proficient hydrogen production under solar light irradiation. Sol Energ Mater and Sol Cells 46:63–71

    Article  Google Scholar 

  3. Asahi RY, Morikawa TA, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  PubMed  Google Scholar 

  4. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  PubMed  Google Scholar 

  5. Barber J et al (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  CAS  PubMed  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mat Chem A 6:2485–2534

    Article  Google Scholar 

  8. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  PubMed  Google Scholar 

  9. Kang ZC, Wang ZL (1997) Chemical activities of graphitic carbon spheres. J Mole Cat A: Chem 118:215–222

    Article  CAS  Google Scholar 

  10. Park C, Engel ES, Crowe A, Gilbert TR, Rodriguez NM (2000) Use of carbon nanofibers in the removal of organic solvents from water. Lang 21:8050–8056

    Article  Google Scholar 

  11. Du J, Liu Z, Li Z, Han B, Sun Z, Huang Y (2005) Carbon onions synthesized via thermal reduction of glycerin with magnesium. Mater Chem and Phy 93:178–180

    Article  CAS  Google Scholar 

  12. Rana RK, Gedanken A (2002) Carbon nanoflask: a mechanistic elucidation of its formation. J Phy Chem B 38:9769–9776

    Article  Google Scholar 

  13. Ugrate D et al (1992) Curling and closure of graphitic networks under electron beam irradiation. Nature 359:707–709

    Article  Google Scholar 

  14. Jin YZ, Gao C, Hsu WK, Zhu Y, Huczko A, Bystrzejewski M, Roe M, Lee CY, Acquah S, Kroto H, Walton DR (2005) Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43(9):1944–1953

    Article  CAS  Google Scholar 

  15. Wang ZL, Yin JS (1998) Graphitic hollow carbon calabashes. Chem Phy Lett 289:189–192

    Article  CAS  Google Scholar 

  16. Geim AK, Novoselov KS (2010) The rise of grapheme. In: Nanoscience and technology: a collection of reviews from nature journals, pp 11–19

    Google Scholar 

  17. Rao CE, Sood AE, Subrahmanyam KE, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Ang Chem Inter Edit 42:7752–7777

    Article  Google Scholar 

  18. Jun LY, Mubarak NM, Yee MJ, Yon LS, Bing CH, Khalid M, Abdullah EC (2018) An overview of functionalised carbon nanomaterial for organic pollutant removal. J Ind Eng Chem 67:175–186

    Article  CAS  Google Scholar 

  19. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 19:9987–10043

    Article  Google Scholar 

  20. Bera R, Dutta A, Kundu S, Polshettiwar V, Patra A (2018) Design of a CdS/CdSe heterostructure for efficient H2 generation and photovoltaic applications. J Phy Chem C 23:12158–12167

    Article  Google Scholar 

  21. Chen H, Liu XY, Wang S, Wang X, Wei Q, Jiang X, Wang F, Xu K, Ke J, Zhang Q, Gao Q (2018) Quaternary two dimensional Zn–Ag–In–S nanosheets for highly efficient photocatalytic hydrogen generation. J Mat Chem A 25:11670–11675

    Article  Google Scholar 

  22. Wu MC, Wu PY, Lin TH, Lin TF (2018) Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment. Appl Sur Sci 430:390–398

    Article  CAS  Google Scholar 

  23. Ma L, Chen YL, Yang DJ, Li HX, Ding SJ, Xiong L, Qin PL, Chen XB (2020) Multi-interfacial plasmon coupling in multigap (Au/AgAu)@ CdS core–shell hybrids for efficient photocatalytic hydrogen generation. Nanosc 7:4383–4392

    Article  Google Scholar 

  24. Shahzad K, Tahir MB, Sagir M (2019) Engineering the performance of heterogeneous WO3/fullerene@ Ni3B/Ni (OH)2 photocatalysts for hydrogen generation. Intern J Hydro Energ 39:21738–21745

    Article  Google Scholar 

  25. Li J, Zhang L, Li J, An P, Hou Y, Zhang J (2019) Nanoconfined growth of carbon-encapsulated cobalts as cocatalysts for photocatalytic hydrogen evolution. ACS Sustain Chem Eng 16:14023–14030

    Article  Google Scholar 

  26. Patra KK, Ghosalya MK, Bajpai H, Raj S, Gopinath CS (2019) Oxidative disproportionation of MoS2/GO to MoS2/MoO3–x/RGO: integrated and plasmonic 2D-multifunctional nanocomposites for solar hydrogen generation from near-infrared and visible regions. J Phy Chem C 35:21685–21693

    Article  Google Scholar 

  27. Rajaambal S, Sivaranjani K, Gopinath CS (2015) Recent developments in solar H2 generation from water splitting. J Chem Sci 127(1):33–47

    Article  CAS  Google Scholar 

  28. Du J, Li S, Du Z, Meng S, Li B (2021) Boron/oxygen-codoped graphitic carbon nitride nanomesh for efficient photocatalytic hydrogen evolution. Chem Eng J 407:127114

    Article  CAS  Google Scholar 

  29. Jinbo P, Sheng S, Wei Z, Jie T, Hongzhi D, Jinbo W, Lang C, Chak-Tong A, Shuang-Feng Y (2020) Recent progress in photocatalytic hydrogen evolution. Acta Phy-Chim Sin 36(3):1905068

    Article  Google Scholar 

  30. San Martín S, Rivero MJ, Ortiz I (2020) Unravelling the mechanisms that drive the performance of photocatalytic hydrogen production. Catalysts 10(8):901

    Article  Google Scholar 

  31. Huang Z, Xi L, Subhani Q, Yan W, Guo W, Zhu Y (2013) Covalent functionalization of multi-walled carbon nanotubes with quaternary ammonium groups and its application in ion chromatography. Carbon 62:127–134

    Article  CAS  Google Scholar 

  32. Mallakpour S, Soltanian S (2016) Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv 6:109916–109935

    Article  CAS  Google Scholar 

  33. Toma FM, Sartorel A, Iurlo M, Carraro M, Rapino S, Hoober-Burkhardt L, Da Ros T, Marcaccio M, Scorrano G, Paolucci F, Bonchio M (2011) Tailored functionalization of carbon nanotubes for electrocatalytic water splitting and sustainable energy applications. Chemsuschem 4:1447

    Article  CAS  PubMed  Google Scholar 

  34. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 14:1620–1636

    Article  Google Scholar 

  35. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Mater Today Chem 10:221–258

    Article  CAS  Google Scholar 

  36. Ge J, Zhang Y, Park SJ (2019) Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review. Materials 12:1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao J, Zhu M, Huang H, Liu Y, Kang Z (2017) Advances, challenges and promises of carbon dots. Inorg Chem Front 12:1963–1986

    Article  Google Scholar 

  38. Mehta A, Mishra A, Basu S, Shetti NP, Reddy KR, Saleh TA, Aminabhavi TM (2019) Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production–a review. J Environ Manage 250:109486

    Article  CAS  PubMed  Google Scholar 

  39. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  PubMed  Google Scholar 

  40. Ali H, Ghosh S, Jana NR (2020) Fluorescent carbon dots as intracellular imaging probes. Wiley Interdisci Rev: Nanomed Nanobiotec 4:1617

    Google Scholar 

  41. Reckmeier CJ, Schneider J, Susha AS, Rogach AL (2016) Luminescent colloidal carbon dots: optical properties and effects of doping. Opt Express 24:312–340

    Article  Google Scholar 

  42. Luo H, Guo Q, Szilágyi PÁ, Jorge AB, Titirici MM (2020) Carbon dots in solar-to-hydrogen conversion. Trends in Chemistry 2:623–637

    Article  CAS  Google Scholar 

  43. Rao VN, Reddy NL, Kumari MM, Cheralathan KK, Ravi P, Sathish M, Neppolian B, Reddy KR, Shetti NP, Prathap P, Aminabhavi TM (2019) Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: a review. J Environ Manag 248:109246

    Article  CAS  Google Scholar 

  44. Wang Y, Zhu Y, Yu S, Jiang C (2017) Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv 65:40973–40989

    Article  Google Scholar 

  45. Tang Y, Hao R, Fu Y, Jiang Y, Zhang X, Pan Q, Jiang B (2016) Carbon quantum dot/mixed crystal TiO2 composites via a hydrogenation process: an efficient photocatalyst for the hydrogen evolution reaction. RSC Adv 99:96803–96808

    Article  Google Scholar 

  46. Reddy NR, Bhargav U, Kumari MM, Cheralathan KK, Sakar M (2020) Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production. Int J Hydrogen Energ 45(13):7584–75615

    Article  Google Scholar 

  47. Tian P, Tang L, Teng KS, Lau SP (2018) Materials Today Chemistry 10:221e258

    Google Scholar 

  48. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem comm 31:3686–3699

    Article  Google Scholar 

  49. Gliniak J, Lin JH, Chen YT, Li CR, Jokar E, Chang CH, Peng CS, Lin JN, Lien WH, Tsai HM, Wu TK (2017) Sulfur-doped graphene oxide quantum dots as photocatalysts for hydrogen generation in the aqueous phase. Chemsuschem 16:3260–3267

    Article  Google Scholar 

  50. Titirici MM, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290

    Article  CAS  PubMed  Google Scholar 

  51. Kang Z, Liu Y, Gao J, Zhu M (2017) Carbon dots for environmental and energy applications: advances, challenges and promises. Inorg Chem Front 4:1963–1986

    Article  Google Scholar 

  52. Jiao Y, Huang Q, Wang J, He Z, Li Z (2019) A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Appl Cat B: Environ 247:124–132

    Article  CAS  Google Scholar 

  53. Sui Y, Wu L, Zhong S, Liu Q (2019) Carbon quantum dots/TiO2 nanosheets with dominant (001) facets for enhanced photocatalytic hydrogen evolution. Appl Surf Sci 480:810–816

    Article  CAS  Google Scholar 

  54. Shi W, Guo F, Li M, Shi Y, Tang Y (2019) N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production. Sep Purif Tech 212:142–149

    Article  CAS  Google Scholar 

  55. Gultom NS, Abdullah H, Kuo DH (2019) Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn (O, S) photocatalyst. Int J Hydrogen Energ 56:29516–29528

    Article  Google Scholar 

  56. Sumana K, Vijayamohanan KP (2020) Synthesis and characterization of graphene quantum dots. Phy Sci Rev 5:20190013

    Google Scholar 

  57. Nguyen BS, Xiao YK, Shih CY, Nguyen VC, Chou WY, Teng H (2018) Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanos 22:10721–10730

    Article  Google Scholar 

  58. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 34:6954–6960

    Article  Google Scholar 

  59. Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook NP, Samuel EL, Hwang CC, Ruan G, Ceriotti G (2013) Coal as an abundant source of graphene quantum dots. Nat comm 1:1–7

    Google Scholar 

  60. Yan Y, Chen J, Li N, Tian J, Li K, Jiang J, Liu J, Tian Q, Chen P (2018) Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano 4:3523–3532

    Article  Google Scholar 

  61. Fantuzzi P, Candini A, Chen Q, Yao X, Dumslaff T, Mishra N, Coletti C, Müllen K, Narita A, Affronte M (2019) Color sensitive response of graphene/graphene quantum dot phototransistors. J Phys Chem C 43:26490–26497

    Article  Google Scholar 

  62. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Mat Today Chem 10:221–258

    Article  CAS  Google Scholar 

  63. Zhang R, Qi S, Jia J, Torre B, Zeng H, Wu H, Xu X (2015) Size and refinement edge-shape effects of graphene quantum dots on UV–visible absorption. J Alloy Compd 623:186–191

    Article  CAS  Google Scholar 

  64. Raghavan A, Sarkar S, Nagappagari LR, Bojja S, MuthukondaVenkatakrishnan S, Ghosh S (2020) decoration of graphene quantum dots on TiO2 nanostructures: photosensitizer and cocatalyst role for enhanced hydrogen generation. Indus Eng Chem Res 29:13060–13068

    Article  Google Scholar 

  65. Calabro RL, Yang DS, Kim DY (2019) Controlled nitrogen doping of graphene quantum dots through laser ablation in aqueous solutions for photoluminescence and electrocatalytic applications. ACS Appl Nano Mater 11:6948–6959

    Article  Google Scholar 

  66. Zhang Z, Zhang J, Chen N, Qu L (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energ Environ Sci 10:8869–8890

    Article  Google Scholar 

  67. Li X, Shen R, Ma S, Chen X, Xie J (2018) Graphene-based heterojunction photocatalysts. Appl Surf Sci 430:53–107

    Article  CAS  Google Scholar 

  68. Yeh TF, Teng CY, Chen SJ, Teng H (2014) Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light Illumination. Adv Mater 20:3297–3303

    Article  Google Scholar 

  69. Yeh TF, Syu JM, Cheng C, Chang TH, Teng H (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater 14:2255–2262

    Article  Google Scholar 

  70. Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong JR (2013) Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater 28:3820–3839

    Article  Google Scholar 

  71. Yeh TF, Chen SJ, Teng H (2015) Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energ 12:476–485

    Article  CAS  Google Scholar 

  72. Chen LC, Teng CY, Lin CY, Chang HY, Chen SJ, Teng H (2016) Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process. Adv Energ Mater 22:1600719

    Article  Google Scholar 

  73. Tian H, Shen K, Hu X, Qiao L, Zheng WN (2017) S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J Alloy Compd 691:369–377

    Article  CAS  Google Scholar 

  74. Qu A, Xie H, Xu X, Zhang Y, Wen S, Cui Y (2016) High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Appl Surf Sci 375:230–241

    Article  CAS  Google Scholar 

  75. Sudhagar P, Herraiz-Cardona I, Park H, Song T, Noh SH, Gimenez S, Sero IM, Fabregat-Santiago F, Bisquert J, Terashima C, Paik U (2016) Exploring graphene quantum dots/TiO2 interface in photoelectrochemical reactions: solar to fuel conversion. Electro Act 187:249–255

    Article  CAS  Google Scholar 

  76. Ebrahimi M, Samadi M, Yousefzadeh S, Soltani M, Rahimi A, Chou TC, Chen LC, Chen KH, Moshfegh AZ (2017) Improved solar-driven photocatalytic activity of hybrid graphene quantum dots/ZnO nanowires: a direct Z-scheme mechanism. ACS Sustain Chem Eng 1:367–375

    Article  Google Scholar 

  77. Lei Y, Yang C, Hou J, Wang F, Min S, Ma X, Jin Z, Xu J, Lu G, Huang KW (2017) Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: unraveling the essential roles of graphene quantum dots. Appl Cat B: Environ 216:59–69

    Article  CAS  Google Scholar 

  78. Dinda D, Park H, Lee HJ, Oh S, Park SY (2020) Graphene quantum dot with covalently linked Rhodamine dye: a high efficiency photocatalyst for hydrogen evolution. Carbon 167:760–769

    Article  CAS  Google Scholar 

  79. Yu S, Zhong YQ, Yu BQ, Cai SY, Wu LZ, Zhou Y (2016) Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet. Phy Chem Chem Phy 30:20338–20344

    Article  Google Scholar 

  80. Ahmad I, Akhtar MS, Ahmed E, Ahmad M, Naz MY (2021) Lu modified ZnO/CNTs composite: a promising photocatalyst for hydrogen evolution under visible light illumination. J Colloid Interface Sci 584:182–192

    Article  CAS  PubMed  Google Scholar 

  81. Chu J, Han X, Yu Z, Du Y, Song B, Xu P (2018) Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures. ACS Appl Mater Interface 10:20404–20411

    Article  CAS  Google Scholar 

  82. Vu MH, Sakar M, Nguyen CC, Do TO (2018) Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustain Chem Eng 6:4194–4203

    Article  CAS  Google Scholar 

  83. You Y, Wang S, Xiao K, Ma T, Zhang Y, Huang H (2018) Z-scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustain Chem Eng 6:16219–16227

    Article  CAS  Google Scholar 

  84. Yang R, Song K, He J, Fan Y, Zhu R (2019) Photocatalytic hydrogen production by RGO/ZnIn2S4 under visible light with simultaneous organic amine degradation. ACS Omega 4:11135–11140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hao X, Jin Z, Yang H, Lu G, Bi Y (2017) Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl Catal B: Environ 210:45–56

    Article  CAS  Google Scholar 

  86. Iijima S et al (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  87. Liang X, Zeng M, Qi C (2010) One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon 6:1844–1848

    Article  Google Scholar 

  88. Zhang WD, Xu B, Jiang L (2010) Functional hybrid materials based on carbon nanotubes and metal oxides. J Mater Chem 31:6383–6391

    Article  Google Scholar 

  89. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Canc Res 16:6652–6660

    Article  Google Scholar 

  90. Xiao S, Zhu W, Liu P, Liu F, Dai W, Zhang D, Chen W, Li H (2016) CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation. Nanoscale 5:2899–2907

    Article  Google Scholar 

  91. Dai K, Zhang X, Fan K, Zeng P, Peng T (2014) Multiwalled carbon nanotube-TiO2 nanocomposite for visible-light-induced photocatalytic hydrogen evolution. J Nanomat

    Google Scholar 

  92. Abrahamson J, Wiles PG, Rhoades BL (1999) Structure of carbon fibres found on carbon arc anodes. Carbon (New York, NY). 11:1873–1874

    Google Scholar 

  93. Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V (2009) Carbon nanotubes and its applications: a review. Asian J Pharma Clin Res 4:17–27

    Google Scholar 

  94. Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 2:205

    Article  Google Scholar 

  95. Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278

    Article  CAS  Google Scholar 

  96. Terrones M et al (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annual Rev Mater Res 1:419–501

    Article  Google Scholar 

  97. Zhang M, Li J (2009) Carbon nanotube in different shapes. Materials Today 6:12–18

    Article  Google Scholar 

  98. Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem

    Google Scholar 

  99. Wang CY, Zhang YY, Wang CM, Tan VBC (2007) Buckling of carbon nanotubes: a literature survey. J Nanosci Nanotech 7(12):4221–4247

    Article  CAS  Google Scholar 

  100. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 11:5159–5223

    Article  Google Scholar 

  101. Kim YA, Hayashi T, Endo M, Dresselhaus MS (2013) Carbon nanofibers. In: Springer handbook of nanomaterials, Springer, pp 233–262

    Google Scholar 

  102. Vajtai R et al (2013) Springer handbook of nanomaterials. Springer Science & Business Media

    Google Scholar 

  103. Wang L, Yao Z, Jia F, Chen B, Jiang Z (2013) A facile synthesis of Znx Cd1–x S/CNTs nanocomposite photocatalyst for H2 production. Dalton Trans 27:9976–9981

    Article  Google Scholar 

  104. Feng C, Chen Z, Jing J, Sun M, Tian J, Lu G, Ma L, Li X, Hou J (2021) Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators. J Mater Sci Tech 80:75–83

    Article  CAS  Google Scholar 

  105. Cao S, Yu J (2016) Carbon-based H2-production photocatalytic materials. J Photochem Photob C: Photochem Rev 1(27):72–99

    Article  Google Scholar 

  106. Umer M, Tahir M, Azam MU, Tahir B, Jaffar MM, Alias H (2019) Montmorillonite dispersed single wall carbon nanotubes (SWCNTs)/TiO2 heterojunction composite for enhanced dynamic photocatalytic H2 production under visible light. Appl Cla Sci 174:110–119

    Article  CAS  Google Scholar 

  107. Naffati N, Sampaio MJ, Da Silva ES, Nsib MF, Arfaoui Y, Houas A, Faria JL, Silva CG (2020) Carbon-nanotube/TiO2 materials synthesized by a one-pot oxidation/hydrothermal route for the photocatalytic production of hydrogen from biomass derivatives. Mat Sci Semic Proc 115:105098

    Article  CAS  Google Scholar 

  108. Peng T, Zeng P, Ke D, Liu X, Zhang X (2011) Hydrothermal preparation of multiwalled carbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy Fuels 5:2203–2210

    Article  Google Scholar 

  109. Kumar P, Boukherroub R, Shankar K (2018) Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J Mater Chem A 27:12876–12931

    Article  Google Scholar 

  110. Savage N et al (2012) Materials science: super carbon. Nature 483:S30–S31

    Article  CAS  PubMed  Google Scholar 

  111. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  PubMed  Google Scholar 

  112. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Amer Chem Soc 6:1339–1339

    Article  Google Scholar 

  113. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 8:4806–4814

    Article  Google Scholar 

  114. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 35:3906–3924

    Article  Google Scholar 

  115. Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M (2009) Insulator to semimetal transition in graphene oxide. J Phy Chem C 35:15768–15771

    Article  Google Scholar 

  116. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 5:270–274

    Article  Google Scholar 

  117. Nowotny J, Bak T, Nowotny MK, Sheppard LR (2007) Titanium dioxide for solar-hydrogen I. Functional properties. Int J Hydrogen Energ 32(14):2609–2629

    Article  CAS  Google Scholar 

  118. Zhang X, Sun Y, Cui X, Jiang Z (2012) A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Int J Hydrogen Energ 37:811–815

    Article  CAS  Google Scholar 

  119. Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21:3415–3421

    Article  CAS  Google Scholar 

  120. Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 9:3670–3678

    Article  Google Scholar 

  121. Lv XJ, Fu WF, Chang HX, Zhang H, Cheng JS, Zhang GJ, Song Y, Hu CY, Li JH (2012) Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J Mater Chem 22:1539–1546

    Article  CAS  Google Scholar 

  122. Min S, Lu G (2012) Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of grapheme. J Phy Chem C 116:25415–25424

    Article  CAS  Google Scholar 

  123. Tran PD, Batabyal SK, Pramana SS, Barber J, Wong LH, Loo SCJ (2012) A cuprous oxide–reduced graphene oxide (Cu2O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale 4:3875–3878

    Article  CAS  PubMed  Google Scholar 

  124. Khan Z, Chetia TR, Vardhaman AK, Barpuzary D, Sastri CV, Qureshi M (2012) Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS-metal oxide hybrids in presence of graphene oxide. RSC Adv 2:12122e8

    Google Scholar 

  125. Mou Z, Yin S, Zhu M, Du Y, Wang X, Yang P, Zheng J, Lu C (2013) RuO2/TiSi2/graphene composite for enhanced photocatalytic hydrogen generation under visible light irradiation. Phy Chem Chem Phy 15:2793–2799

    Article  CAS  Google Scholar 

  126. Yang Z, Zhang Y, Schnepp Z (2015) Soft and hard templating of graphitic carbon nitride. J Mater Chem A 27:14081–14092

    Article  Google Scholar 

  127. Rhimi B, Wang C, Bahnemann D (2020) Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review. J Phy: Energ 2:042003

    CAS  Google Scholar 

  128. Hong Y, Li C, Fang Z, Luo B, Shi W (2017) Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Carbon 121:463–471

    Article  CAS  Google Scholar 

  129. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  130. Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phy Chem C 115(15):7355–7363

    Article  CAS  Google Scholar 

  131. Song C, Fan M, Shi W, Wang W (2018) High-performance for hydrogen evolution and pollutant degradation of reduced graphene oxide/two-phase gC3N4 heterojunction photocatalysts. Environ Sci Pollut Res 25:14486–14498

    Article  CAS  Google Scholar 

  132. Zou JP, Wang LC, Luo J, Nie YC, Xing QJ, Luo XB, Du HM, Luo SL, Suib SL (2016) Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. App Cat B: Environm 15(193):103–109

    Article  Google Scholar 

  133. He F, Chen G, Zhou Y, Yu Y, Li L, Hao S, Liu B (2016) ZIF-8 derived carbon (C-ZIF) as a bifunctional electron acceptor and HER cocatalyst for gC3N4: construction of a metal-free, all carbon-based photocatalytic system for efficient hydrogen evolution. J Mater Chem A 4(10):3822–3827

    Article  CAS  Google Scholar 

  134. Wang B, Zhang J, Huang F (2017) Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts. App Sur Sci 391:449–456

    Article  CAS  Google Scholar 

  135. Yao L, Wei D, Ni Y, Yan D, Hu C (2016) Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: highly efficient visible light-induced H2-generation. Nano Energ 26:248–256

    Article  CAS  Google Scholar 

  136. She X, Wu J, Xu H, Zhong J, Wang Y, Song Y, Nie K, Liu Y, Yang Y, Rodrigues MT, Vajtai R (2017) High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv Ener Mater 17:1700025

    Article  Google Scholar 

  137. Martin DJ, Reardon PJT, Moniz SJ, Tang J (2014) Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J Am Chem Soc 36:12568–12571

    Article  Google Scholar 

  138. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    Article  CAS  PubMed  Google Scholar 

  139. Bard AJ et al (1980) Photoelectrochemistry. Science 207:139–144

    Article  CAS  PubMed  Google Scholar 

  140. Xie H, Hou C, Wang H, Zhang Q, Li Y (2017) S, N co-doped graphene quantum dot/TiO2 composites for efficient photocatalytic hydrogen generation. Nano Res Lett 1:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Senthilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandhakumar, E. et al. (2023). Carbonaceous Nanostructures-Based Photocatalysts for Sustainable H2 Production. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_10

Download citation

Publish with us

Policies and ethics