Skip to main content

Nano-biosensors for Diagnosing Infectious and Lifestyle-Related Disease of Human: An Update

  • Chapter
  • First Online:
Next-Generation Nanobiosensor Devices for Point-Of-Care Diagnostics

Abstract

At present time, a variety of infectious and lifestyle diseases are becoming life-threatening day by day. Development in technology and immergence of nanoscience helped to provide a better health care system. Based on the working mechanism nano-biosensors are of majorly two types: electrochemical nano-biosensor and optical nano-biosensor. Nanomaterials used in the nano-biosensor increased their efficacy, sensitivity, and selectivity of the device. Different diseases have different biomarkers to get detected such as, absorption of cholesterol oxidase detect cholesterol, glaucoma in a diabetes patient is detected by cytokine Interleukin 12 in tear, C-reactive protein is detected for liver inflammation, the SARS virus is detected by N-protein and miRNA is a potential biomarker of cancers, especially colorectal cancer. Hitherto, identification of a biomarker for a specific disease is the major work. The accuracy of nano-biosensor in diagnosing diseases put them in demand in the biomedical field. But the major drawback comes with the cost-effectiveness and use of nanomaterial in health sectors focussing on any toxicological impact of the nano-biosensor on health in long run. In this chapter, we present an overview of the working mechanism of different nano-biosensors in diagnosing different infectious and lifestyle diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s Disease

ADP3:

Alzheimer’s disease peptoids

AMP:

Antibody-Mimic Proteins

Apo:

Apolipoprotein

Aβ:

Amyloidβ

ChOx:

Cholesterol oxidase

CMOS:

Complementary Metal Oxide

CNTs:

Carbon nanotubes

CRC:

Colorectal Cancer

CSF:

Cerebrospinal fluid

Cu-CD:

Cu-Carbon Dot

SARS:

Severe Acute Respiratory Syndrome

DP:

Dopamine

EDC:

N-ethyl-N-(3-dimethylaminopropyl) carbodiimide hydrochloride

EIS:

Impedance Spectroscopy

ELISA:

Enzyme-Linked Immunoassay

FET:

Field-Effect Transistor

Fn:

Fibronectin-based protein

HCFA:

Hypoxia-activatable and cytoplasmic protein-powered fluorescence cascade amplifier

HE4:

Human Epididymis Protein 4

IBD:

Irritable Bowel Disease

IBS:

Irritable Bowel Syndrome

IL-12p70:

Cytokine Interleukin 12

MERS:

Middle East Respiratory Syndrome

MONp:

Metal oxide nanoparticles

MRI:

Magnetic Resonance Imaging

MUA:

11-Mercaptoundecanoic acid

NFT:

Neurofibrillary Tangles

NHS:

N-Hydroxysulfosuccinimide

NIR:

Near-infrared

NP:

Nanoparticle

N-protein:

Nucleocapsid protein

OPD:

Optical Path Difference

ORR:

Optical Ring Resonators

PD:

Parkinson’s Disease

PfHRP-2:

Plasmodium falciparum histidine-rich protein-2

POC:

Point of Care

QD:

Quantum Dot

RA:

Rheumatoid arthritis

RIA:

Radioimmunoassay

SERS:

Surface-Enhanced Raman Spectroscopy

SiNW:

Silicon Nanowire

SN:

Substantia Nigra

SPR:

Surface Plasmon Resonance

SPRi:

Surface Plasmon Resonance Imaging

SPs:

Surface Plasmons

LRET:

Luminescence Resonance Energy Transfer

TIRF:

Total Internal Reflection Fluorescence

UCL:

Ulcerative Colitis

ZnS:

Zinc sulfide

References

  1. Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23, 22–36.

    Google Scholar 

  2. Reshetilov, A., Iliasov, P., Reshetilova, T., & Rai, M. (2011). Nanobiosensors and their applications. In Metal nanoparticles in microbiology. Springer. https://doi.org/10.1007/978-3-642-18312-6_12

    Chapter  Google Scholar 

  3. Zhang, X., Guo, Q., & Cui, D. (2009). Recent advances in nanotechnology applied to biosensors. Sensors., 9(2), 1033–1053. https://doi.org/10.3390/s90201033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2020). The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules., 25(1). https://doi.org/10.3390/molecules25010112. MDPI AG.

  5. Cui, D. (2007). Advances and prospects on biomolecules functionalized carbon nanotubes. Journal of Nanoscience and Nanotechnology, 7, 1298–1314.

    Article  CAS  PubMed  Google Scholar 

  6. Cui, D., Tian, F., Kong, Y., Titushikin, I., & Gao, H. (2004). Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology, 15, 154–157.

    Article  CAS  Google Scholar 

  7. Ito, A., Ino, K., Kobayashi, T., & Honda, H. (2005). The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials, 26, 6185–6193.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, D. H., Lee, S. H., Kim, K. N., Kim, K. M., Shim, I. B., & Lee, Y. K. (2005). Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. Journal of Magnetism and Magnetic Materials, 293, 287–292.

    Article  CAS  Google Scholar 

  9. Lee, H., Lee, E., Kim, D. K., Jang, N. K., Jeong, Y. Y., & Jon, S. (2006). Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. Journal of the American Chemical Society, 128, 7383–7389.

    Article  CAS  PubMed  Google Scholar 

  10. Vernet-Crua, A., Medina-Cruz, D., Mostafavi, E., Benko, A., Cholula-Diaz, J. L., Saravanan, M., et al. (2021). Nanobiosensors for theranostic applications, nanobiomaterials for therapeutics and diagnostic applications (pp. 511–543). Elsevier. https://doi.org/10.1016/B978-0-12-821013-0.00005-2

    Book  Google Scholar 

  11. Bharti, A., Rana, S., & Prabhakar, N. (2019). Electrochemical nanobiosensors for cancer diagnosis. Materials Research Foundations, 47, 157–210.

    Article  CAS  Google Scholar 

  12. Singh, A. K., Das, A., & Kumar, P. (2021). Nanobiosensors and their applications. In Nanotechnology (pp. 249–288). Jenny Stanford Publishing.

    Chapter  Google Scholar 

  13. Kang, M., & Lee, S. (2022). Graphene for nanobiosensors and nanobiochips. Advances in Experimental Medicine and Biology, 1351, 203–232. https://doi.org/10.1007/978-981-16-4923-3_10. PMID: 35175618.

    Article  PubMed  Google Scholar 

  14. Bharathala, S., & Sharma, P. (2019). Biomedical applications of nanoparticles. In Nanotechnology in modern animal biotechnology: concepts and applications (pp. 113–132). Elsevier. https://doi.org/10.1016/B978-0-12-818823-1.00008-9

    Chapter  Google Scholar 

  15. Das, N. C., Roy, B., Patra, R., Choudhury, A., Ghosh, M., & Mukherjee, S. (2021). Surface-modified noble metal nanoparticles as antimicrobial agents: biochemical, molecular and therapeutic perspectives. In Nanotechnology for advances in medical microbiology. environmental and microbial biotechnology. Springer.

    Google Scholar 

  16. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: current status and future prospects. The FASEB Journal, 19, 311–330.

    Article  CAS  PubMed  Google Scholar 

  17. Saji, V. S., Choe, H. C., & Yeung, K. W. K. (2010). Nanotechnology in biomedical applications: A review. International Journal of Nano and Biomaterials, 3(2), 119–139. https://doi.org/10.1504/IJNBM.2010.037801

    Article  CAS  Google Scholar 

  18. Saylan, Y., Yılmaz, F., & Denizli, A. (2021). Nanobiosensors for biomedical applications. In N. Saglam, F. Korkusuz, & R. Prasad (Eds.), Nanotechnology applications in health and environmental sciences. Nanotechnology in the life sciences. Springer. https://doi.org/10.1007/978-3-030-64410-9_8

    Chapter  Google Scholar 

  19. Marks, R., & Robert, S. (2007). Handbook of biosensors and biochips. John Wiley.

    Google Scholar 

  20. Mukherjee, S., & Mukherjee, N. (2021). Current developments in diagnostic biosensor technology: relevance to therapeutic intervention of infectious and inflammatory diseases of human. In G. Dutta, A. Biswas, & A. Chakrabarti (Eds.), Modern techniques in biosensors (Studies in systems, decision and control) (Vol. 327). Springer. https://doi.org/10.1007/978-981-15-9612-4_1

    Chapter  Google Scholar 

  21. Huang, Y., Das, P. K., & Bhethanabotla, V. R. (2021). Surface acoustic waves in biosensing applications. Sensors and Actuators Reports, 3. https://doi.org/10.1016/j.snr.2021.100041

  22. Namdari, P., Daraee, H., & Eatemadi, A. (2016). Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Research Letters., 11(1). https://doi.org/10.1186/s11671-016-1618-z. Springer New York LLC.

  23. Dey, B., Mukherjee, S., Mukherjee, N., Mondal, R. K., Satpati, B., Senapati, D., & Babu, S. P. S. (2016). Green silver nanoparticles for drug transport, bioactivities and a bacterium (Bacillus subtilis)-mediated comparative nano-patterning feature. RSC Adv., 6, 46573–46581.

    Article  CAS  Google Scholar 

  24. Mohammadniaei, M., Park, C., Min, J., Sohn, H., & Lee, T. (2018). Fabrication of electrochemical-based bioelectronic device and biosensor composed of biomaterial-nanomaterial hybrid. Advances in Experimental Medicine and Biology., 1064, 263–296. https://doi.org/10.1007/978-981-13-0445-3_17. Springer New York LLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamer, U., Seçkin, A. İ., Temur, E., & Torul, H. (2011). Fabrication of biosensor based on polyaniline/gold nanorod composite. International Journal of Electrochemistry, 2011, 1–7. https://doi.org/10.4061/2011/869742

    Article  CAS  Google Scholar 

  26. Yüce, M., & Kurt, H. (2017). How to make nanobiosensors: Surface modification and characterisation of nanomaterials for biosensing applications. RSC Advances., 7(78), 49386–49403. https://doi.org/10.1039/c7ra10479k. Royal Society of Chemistry.

    Article  CAS  Google Scholar 

  27. Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectrontronic., 6(1–2), 121–131.

    Article  Google Scholar 

  28. Mondal, M. K., Mukherjee, S., Saha, S. K., Chowdhury, P., & Babu, S. P. S. (2017). Design and synthesis of reduced graphene oxide based supramolecular scaffold: a benign microbial resistant network for enzyme immobilization and cell growth. Materials Science and Engineering, 75, 1168–1177.

    Article  CAS  PubMed  Google Scholar 

  29. Pérez, D. J., Patiño, E. B., & Orozco, J. (2022). Electrochemical nanobiosensors as point-of-care testing solution to cytokines measurement limitations. Electroanalysis., 34(2), 184–211. https://doi.org/10.1002/elan.202100237

    Article  CAS  Google Scholar 

  30. Gruhl, F. J., Rapp, B. E., & Länge, K. (2011). Biosensors for diagnostic applications. In Molecular diagnostics (pp. 115–148). Springer.

    Chapter  Google Scholar 

  31. Dey, B., Mondal, R. K., Mukherjee, S., Satpati, B., Mukherjee, N., Mandal, A., et al. (2015). A supramolecular hydrogel for generation of a benign DNA-hydrogel. RSC Adv., 5, 105961–105968.

    Article  CAS  Google Scholar 

  32. Dey, B., Mukherjee, S., Mukherjee, N., Mondal, R. K., Satpati, B., & Babu, S. P. S. (2018). Polyphenoloxidase-based luminescent enzyme hydrogel: an efficient redox active immobilized scaffold. Bulletin of Materials Science., 41, 14. https://doi.org/10.1007/s12034-017-1529-3

    Article  CAS  Google Scholar 

  33. Mukherjee, S., Basak, B., Bhunia, B., Dey, A., & Mondal, B. (2013). Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial waste water. Reviews in Environmental Science and Bio/Technology., 12, 61–73.

    Article  CAS  Google Scholar 

  34. Patel, S., Nanda, R., Sahoo, S., & Mohapatra, E. (2016). Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochemistry Research International. https://doi.org/10.1155/2016/3130469

  35. Gouvea, C. (2011). Biosensors for health applications. In Biosensors for health, environment and biosecurity. InTech Open. https://doi.org/10.5772/16983

    Chapter  Google Scholar 

  36. Song, M., Yang, M., & Hao, J. (2021). Pathogenic virus detection by optical nanobiosensors. Cell Reports Physical Science., 1(2). https://doi.org/10.1016/j.xcrp.2020.100288. Cell Press.

  37. Gu, B., & Zhang, Q. (2018). Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Advanced Science., 5, 1700609.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fahmy, H. M., Serea, E. S. A., Salah-Eldin, E. R., Al-Hafiry, S. A., Ali, M. K. Shalan, A. E., et al.(2022). Recent progress in graphene- and related carbon-nanomaterial-based electrochemical biosensors for early disease detection. The Sciences and Engineering 964–1000. doi: https://doi.org/10.1021/acsbiomaterials.1c00710

  39. Behboodi, H., Pourmadadi, M., Omidi, M., Rahmandoust, M., Siadat, S. O. R., & Shayeh, J. S. (2022). Cu-CDs as dual optical and electrochemical nanosensor for βME detection. Surfaces and Interfaces, 29. https://doi.org/10.1016/j.surfin.2021.101710

  40. Vidic, J., Manzano, M., Chang, C. M., & Jaffrezic-Renault, N. (2017). Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, 48(1), 1–22. https://doi.org/10.1186/S13567-017-0418-5

    Article  Google Scholar 

  41. Kaushik, A., & Mujawar, M. A. (2018). Point of care sensing devices: Better care for everyone. Sensors (Switzerland), 18(12). https://doi.org/10.3390/S18124303

  42. Vashist, S. K. (2017). Point-of-care diagnostics: recent advances and trends. Biosensors., 7(4), 62. https://doi.org/10.3390/BIOS7040062

    Article  PubMed  PubMed Central  Google Scholar 

  43. Antiochia, R. (2020). Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Microchimica Acta, 187(12), 1–13. https://doi.org/10.1007/S00604-020-04615-X/FIGURES/6

    Article  Google Scholar 

  44. Ishikawa, F. N., Chang, H. K., Curreli, M., Liao, H. I., Olson, C. A., Chen, P. C., et al. (2009). Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 3(5), 1219. https://doi.org/10.1021/NN900086C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inci, F., Tokel, O., Wang, S., Gurkan, U. A., Tasoglu, S., Kuritzkes, D. R., et al. (2013). Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano, 7(6), 4733–4745. https://doi.org/10.1021/NN3036232/SUPPL_FILE/NN3036232_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, X., Feng, Y., Duan, S., Su, L., Zhang, J., & He, F. (2019). Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs-DNA. ACS Sensors, 4(4), 849–855. https://doi.org/10.1021/ACSSENSORS.8B01230/SUPPL_FILE/SE8B01230_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  47. Ma, J., Du, M., Wang, C., Xie, X., Wang, H., Li, T., et al. (2021). Rapid and sensitive detection of mycobacterium tuberculosis by an enhanced nanobiosensor. ACS Sensors. https://doi.org/10.1021/ACSSENSORS.1C01227/SUPPL_FILE/SE1C01227_SI_001.PDF

  48. Brince, K. P., Kumar, S., Tripathy, S., Vanjari, S. R. K., Singh, V., & Singh, S. G. (2016). A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria. Biosensors and Bioelectronics, 80, 39–46. https://doi.org/10.1016/J.BIOS.2016.01.036

    Article  Google Scholar 

  49. Obisesan, O. R., Adekunle, A. S., Oyekunle, J. A. O., Sabu, T., Nkambule, T. T. I., & Mamba, B. B. (2019). Development of electrochemical nanosensor for the detection of malaria parasite in clinical samples. Frontiers in Chemistry, 7(FEB), 89. https://doi.org/10.3389/FCHEM.2019.00089/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Layqah, L. A., & Eissa, S. (2019). An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochimica Acta, 186(4). https://doi.org/10.1007/S00604-019-3345-5

  51. Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., Gharaatifar, N., Hasanzadeh, M., et al. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry, 97, 445–457. https://doi.org/10.1016/J.TRAC.2017.10.005

    Article  CAS  Google Scholar 

  52. Wasik, D., Mulchandani, A., & Yates, M. V. (2018). Point-of-use nanobiosensor for detection of dengue virus NS1 antigen in adult aedes aegypti: A potential tool for improved dengue surveillance. Analytical Chemistry, 90(1), 679–684. https://doi.org/10.1021/ACS.ANALCHEM.7B03407/SUPPL_FILE/AC7B03407_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  53. Kaushik, A., Yndart, A., Kumar, S., Jayant, R. D., Vashist, A., Brown, A. N., et al. (2018). A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Scientific Reports, 8(1), 1–5. https://doi.org/10.1038/s41598-018-28035-3

    Article  CAS  Google Scholar 

  54. Naveca, F. G., Pontes, G. S., Chang, A. Y. H., da Silva, G. A. V., do Nascimento, V. A., da Monteiro, D. C. S., da Silva, M. S., et al. (2018). Analysis of the immunological biomarker profile during acute Zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage. Memorias Do Instituto Oswaldo Cruz, 113(6). https://doi.org/10.1590/0074-02760170542

  55. Zare, H., Meshkat, Z., Hatamluyi, B., Rezayi, M., Ghazvini, K., Derakhshan, M., et al. (2022). The first diagnostic test for specific detection of Mycobacterium simiae using an electrochemical label-free DNA nanobiosensor. Talanta, 238(Pt 2). https://doi.org/10.1016/J.TALANTA.2021.123049

  56. Al-Abodi, H. R., Jawad, Z. N., Al-Yasiri, M. H., Al-Saadi, A. G. M., Memariani, H., Sabokrouh, A., et al. (2020). Novel gold nanobiosensor platforms for rapid and inexpensive detection of Vibrio cholerae. Reviews in Medical Microbiology, 31(2), 70–74. https://doi.org/10.1097/MRM.0000000000000197

    Article  Google Scholar 

  57. Uddin, M. I., Islam, S., Nishat, N. S., Hossain, M., Rafique, T. A., Rashu, R., et al. (2016). Biomarkers of environmental enteropathy are positively associated with immune responses to an oral cholera vaccine in Bangladeshi children. PLoS Neglected Tropical Diseases, 10(11). https://doi.org/10.1371/JOURNAL.PNTD.0005039

  58. Farooq, S., Neves, W. W., Pandoli, O., del Rosso, T., de Lima, L. M., Dutra, R. F., et al. (2018). Engineering a plasmonic sensing platform for Candida albicans antigen identification. Journal of Nanophotonics., 12(3), 033003. https://doi.org/10.1117/1.JNP.12.033003

    Article  Google Scholar 

  59. León, C., Ruiz-Santana, S., Saavedra, P., Castro, C., Loza, A., Zakariya, I., et al. (2016). Contribution of Candida biomarkers and DNA detection for the diagnosis of invasive candidiasis in ICU patients with severe abdominal conditions. Critical Care (London, England), 20(1). https://doi.org/10.1186/S13054-016-1324-3

  60. Hussain, K. K., Malavia, D., Johnson, E. M., Littlechild, J., Winlove, C. P., Vollmer, F., et al. (2020). Biosensors and diagnostics for fungal detection. Journal of Fungi (Basel, Switzerland), 6(4), 1–26. https://doi.org/10.3390/JOF6040349

    Article  Google Scholar 

  61. Murphy, S. C., Ishizuka, A. S., Billman, Z. P., Olsen, T. M., Seilie, A. M., Chang, M., et al. (2018). Plasmodium 18S rRNA of intravenously administered sporozoites does not persist in peripheral blood. Malaria Journal, 17(1), 1–7. https://doi.org/10.1186/S12936-018-2422-2/FIGURES/2

    Article  Google Scholar 

  62. Kon, K., & Rai, M. (2015). Silver nanoparticles for the control of vector-borne infections. In Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases (pp. 39–49). Elsevier. https://doi.org/10.1016/B978-0-12-801317-5.00003-7

    Chapter  Google Scholar 

  63. Satapathy, A. K., Sartono, E., Sahoo, P. K., Dentener, M. A., Michael, E., Yazdanbakhsh, M., et al. (2006). Human bancroftian filariasis: immunological markers of morbidity and infection. Microbes and Infection, 8(9–10), 2414–2423. https://doi.org/10.1016/J.MICINF.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  64. Carrillo, E., & Moreno, J. (2019). Editorial: biomarkers in leishmaniasis. Frontiers in Cellular and Infection Microbiology, 9, 388. https://doi.org/10.3389/FCIMB.2019.00388/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martins, B. R., Barbosa, Y. O., Andrade, C. M. R., Pereira, L. Q., Simão, G. F., de Oliveira, C. J., et al. (2020). Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes. Biosensors., 10(8), 81. https://doi.org/10.3390/BIOS10080081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lagatie, O., Verheyen, A., van Asten, S., Odiere, M. R., Djuardi, Y., Levecke, B., et al. (2020). 2-Methyl-pentanoyl-carnitine (2-MPC): a urine biomarker for patent Ascaris lumbricoides infection. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-72804-y

    Article  CAS  Google Scholar 

  67. Lednický, T., & Bonyár, A. (2020). Large scale fabrication of ordered gold nanoparticle-epoxy surface nanocomposites and their application as label-free plasmonic DNA biosensors. ACS Applied Materials and Interfaces, 12(4), 4804–4814. https://doi.org/10.1021/ACSAMI.9B20907/SUPPL_FILE/AM9B20907_SI_001.PDF

    Article  PubMed  Google Scholar 

  68. Ubeda, C., Lepe-Balsalobre, E., Ariza-Astolfi, C., & Ubeda-Ontiveros, J. M. (2019). Identification of volatile biomarkers of Giardia duodenalis infection in children with persistent diarrhoea. Parasitology Research, 118(11), 3139–3147. https://doi.org/10.1007/S00436-019-06433-4/FIGURES/2

    Article  CAS  PubMed  Google Scholar 

  69. Spadafora, L. J., Kearney, M. R., Siddique, A., Ali, I. K., Gilchrist, C. A., Arju, T., et al. (2016). Species-specific immunodetection of an entamoeba histolytica cyst wall protein. PLoS Neglected Tropical Diseases, 10(5), e0004697. https://doi.org/10.1371/JOURNAL.PNTD.0004697

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chu, M. X., Miyajima, K., Takahashi, D., Arakawa, T., Sano, K., Sawada, S.-i., Kudo, H., Iwasaki, Y., Akiyoshi, K., Mochizuki, M., & Mitsubayashi, K. (2011). Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta, 83(3), 960–965. S0039914010008519. https://doi.org/10.1016/j.talanta.2010.10.055

    Article  CAS  PubMed  Google Scholar 

  71. Clark, L. C., Jr. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of New York of Academy Science., 102, 29–45.

    Article  CAS  Google Scholar 

  72. Cavalcanti, A., Shirinzadeh, B., Zhang, M., & Kretly, L. C. (2008). Nanorobot hardware architecture for medical defense. Sensors (Basel, Switzerland), 8(5), 2932–2958. https://doi.org/10.3390/s8052932

    Article  CAS  PubMed  Google Scholar 

  73. Beauharnois, M. E., Neelamegham, S., & Matta, K. L. (2006). Quantitative measurement of selectin-ligand interactions. In Glycobiology protocols (pp. 343–358). Springer.

    Chapter  Google Scholar 

  74. Koschwanez, H. E., & Reichert, W. M. (2007). In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials, 28, 3687–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Song, C., Que, S., Heimer, L., & Que, L. (2020). On-chip detection of the biomarkers for neurodegenerative diseases: Technologies and prospects. Micromachines., 11(7). https://doi.org/10.3390/MI11070629. MDPI AG.

  76. Ding, X., Song, C., & Que, L. (2019). Fabrication of Contact Lens Device with Integrated Microtubes for in Situ ExtendedDrug Delivery for Ocular Disease Treatment. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORSXXXIII), Berlin, Germany. https://doi.org/10.21741/9781644900130-5.

  77. Park, J., Kim, J., Kim, S. Y., Cheong, W. H., Jang, J., Park, Y. G., et al. (2018). Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances., 4, 9841.

    Article  Google Scholar 

  78. Song, C., Ben-Shlomo, G., & Que, L. A. (2019). Multifunctional smart soft contact lens device enabled by nanopore thin film for glaucoma diagnostics and in situ drug delivery. Journal of Microelectromechanical Systems, 28, 810–816.

    Article  CAS  Google Scholar 

  79. Yang, T., Santisteban, M. M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J. M., et al. (2015). Gut dysbiosis is linked to hypertension. Hypertension, 65(6), 1331–1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315

    Article  CAS  PubMed  Google Scholar 

  80. Barani, M., Rahdar, A., Sargazi, S., Amiri, M. S., Sharma, P. K., & Bhalla, N. (2021). Nanotechnology for inflammatory bowel disease management: Detection, imaging and treatment. In Sensing and bio-sensing research (Vol. 32). Elsevier. https://doi.org/10.1016/j.sbsr.2021.100417

    Chapter  Google Scholar 

  81. Karban, A., Nakhleh, M. K., Cancilla, J. C., Vishinkin, R., Rainis, T., Koifman, E., et al. (2016). Programmed nanoparticles for tailoring the detection of inflammatory bowel diseases and irritable bowel syndrome disease via breathprint. Advanced Healthcare Materials., 5(18), 2339–2344.

    Article  CAS  PubMed  Google Scholar 

  82. Shepherd, S., McGuire, N. D., de Lacy Costello, B., Ewen, R., Jayasena, D., Vaughan, K., et al. (2014). The use of a gas chromatograph coupled to a metal oxide sensor for rapid assessment of stool samples from irritable bowel syndrome and inflammatory bowel disease patients. Journal of Breath Research., 8(2), 026001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tang, H., Xiang, D., Wang, F., Mao, J., Tan, X., & Wang, Y. (2017). 5-ASA-loaded SiO2 nanoparticles-a novel drug delivery system targeting therapy on ulcerative colitis in mice, Molecular Medicine Reports. Pp., 15(3), 1117–1122.

    Google Scholar 

  84. Girigoswami, K., & Girigoswami, A. (2021). A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocrine, Metabolic & Immune Disorders Drug Targets, 21(1), 12–26. https://doi.org/10.2174/1871530320666200515115723

    Article  CAS  Google Scholar 

  85. Lv, Y., Wu, R., Feng, K., Li, J., Mao, Q., Yuan, H., et al. (2017). Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot- based fluorescence-linked immunosorbent assay. Journal of Nanobiotechnology., 15(1), 35.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Covarrubias-Zambrano, O., Motamedi, M., Ameredes, B. T., Tian, B., Calhoun, W. J., Zhao, Y., et al. (2022). Optical biosensing of markers of mucosal inflammation. Nanomedicine: Nanotechnology, Biology and Medicine, 40, 102476. https://doi.org/10.1016/J.NANO.2021.102476

    Article  CAS  PubMed  Google Scholar 

  87. Chandra, P. (2015). Electrochemical nanobiosensors for cancer diagnosis. Journal of Analytical and Bioanalytical Techniques., 6(2), 1000–1119. https://doi.org/10.4172/2155-9872

    Article  Google Scholar 

  88. Grimm, J., Perez, M., Josephson, L., & Weissleder, R. (2004). Novel nanosensor for raid analysis of telomerase activity. Cancer Research., 64, 639.

    Article  CAS  PubMed  Google Scholar 

  89. Rai, M., Gade, A., Gaikwad, S., Marcato, P. D., & Durán, N. (2012). Biomedical applications of nanobiosensors: the state-of-the-art. Journal of the Brazilian Chemical Society, 23(1), 14–24.

    CAS  Google Scholar 

  90. Pathak, P., Katiyar, V. K., & Giri, S. (2007). Cancer research-nanoparticles, nanobiosensors and their use in cancer research. Journal of Nanotechnology, 3, 1–4.

    Google Scholar 

  91. Prasad, M., Lambe, U. P., Brar, B., Shah, I., Manimegalai, J., Ranjan, K., & Iqbal, H. M. (2018). Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomedicine & Pharmacotherapy, 97, 1521–1537.

    Article  CAS  Google Scholar 

  92. Williams, R. M., Lee, C., Galassi, T. V, Harvey, J. D., Leicher, R., Sirenko, M., et al. (2018). C A N C E R Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. https://www.science.org

  93. Zhu, Y., Chandra, P., & Shim, Y. B. (2013). Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Analytical Chemistry, 85, 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  94. Ganesh, H. V. S., Chow, A. M., & Kerman, K. (2016). Recent advances in biosensors for neurodegenerative disease detection. Trends in Analytical Chemistry. 79: 363–370). doi: https://doi.org/10.1016/j.trac.2016.02.012.Elsevier

  95. Zhao, Z., Zhu, L., Bu, X., Ma, H., Yang, S., Yang, Y., et al. (2015). Label-free detection of Alzheimer’s disease through the ADP3 peptoid recognizing the serum amyloid-beta42 peptide. Chemical Communications (Camb), 51, 718–721.

    Article  CAS  Google Scholar 

  96. Morales-Narvaez, E., Monton, H., Fomicheva, A., & Merkoci, A. (2012). Signal enhancement in 505antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer’s 506disease biomarker screening. Analytical Chemistry, 84, 6821–6827.

    Article  CAS  PubMed  Google Scholar 

  97. Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. The New England Journal of Medicine, 367, 795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Preische, O., Schultz, S. A., Apel, A., Kuhle, J., Kaeser, S. A., Barro, C., et al. (2019). Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nature Medicine., 25, 277–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iqbal, K., Alonso-Adel, C., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., et al. (2005). Tau pathology in Alzheimer’s disease and other tauopathies. Biochimica et Biophysica Acta, 1739, 198–210.

    Article  CAS  PubMed  Google Scholar 

  100. Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of Neurology and Neurosurgery Psychiatry., 79(4), 368–376.

    Article  CAS  Google Scholar 

  101. Dickson, D. W. (2012). Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harbour in Perspective Medicine, 2, 445.

    Google Scholar 

  102. Lundvig, D., Lindersson, E., & Jensen, P. H. (2005). Pathogenic effects of alpha-synuclein aggregation. Brain Research. Molecular Brain Research, 134, 3–17.

    Article  CAS  PubMed  Google Scholar 

  103. Shulman, M., De Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: genetics and pathogenesis. Annual Review of Pathology, 6, 193–222.

    Article  CAS  PubMed  Google Scholar 

  104. Ankireddy, S. R., & Kim, J. (2015). Selective detection of dopamine in the presence of ascorbic acid via 511fluorescence quenching of InP/ZnS quantum dots. International Journal of Nanomedicine, 10, 113–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chamorro-Garcia, A., & Merkoçi, A. (2016). Nanobiosensors in diagnostics. Nanobiomedicine, 3, 1849543516663574. https://doi.org/10.1177/1849543516663574

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang, S., Li, K., Chen, Y., Chen, H., Ma, M., Feng, J., et al. (2015). Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials, 39, 206–217. https://doi.org/10.1016/J.BIOMATERIALS.2014.11.009

    Article  PubMed  Google Scholar 

  107. Aqra, M. W., & Ramanathan, A. A. (2021). Review of the recent advances in nano-biosensors and technologies for healthcare applications. Chemistry Proceedings., 5(1), 76. https://doi.org/10.3390/CSAC2021-10473

    Article  Google Scholar 

Download references

Acknowledgments

SM acknowledges University Grants Commission (UGC) (Ref no. F.2-12/2019 (STRIDE) and KNU-UGC STRIDE (Ref no. KNU/R/STRIDE/1077/21) and Department of Science and Technology-Science & Engineering Research Board (DST-SERB) (Ref no.-SRG/2021/002605) for supporting his research activities and laboratory through awarding research grants. PC thanks DST, Govt. of India for the award of the DST-INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprabhat Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padma, S., Chakraborty, P., Mukherjee, S. (2023). Nano-biosensors for Diagnosing Infectious and Lifestyle-Related Disease of Human: An Update. In: Dutta, G. (eds) Next-Generation Nanobiosensor Devices for Point-Of-Care Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-19-7130-3_4

Download citation

Publish with us

Policies and ethics