Skip to main content

An Overview of Integrated Miniaturized/Microfluidic Electrochemical Biosensor Platforms for Health Care Applications

  • Chapter
  • First Online:
Next Generation Smart Nano-Bio-Devices

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 322))

  • 425 Accesses

Abstract

The increasing demand of biosensing in the health care sector is meticulously associated with the need of fabricating diagnostic tools with an instant, point-of-care (POC) approach. These devices are expected to have high sensitivity, portability and selectivity. Off lately, an extensive focus on designing biosensors with an imperative technique has been accomplished to ensemble the materials, equipment and methodologies to improve their performance. Basically, biosensor is an analytical sensor which has a biological moiety, like enzymes, antibodies, live cells, etc., as an electron transfer mediator to detect analytes via a suitable detection mechanism including electro-catalytic activity. These sensors tend to produce electrical current signals whose intensity is dependent on the concentration of the selective analyte. Since, 1999, when IUPAC designated biosensor as a sovereign tool for selective qualitative and quantitative analyte detection, several chemically modified biosensors have been reported. However, most of these are bulk electrodes that are laboratory-based, use large sample volumes, lack POC approach and therefore cannot be employed for real time field sensing. To overcome this, significant research has been carried out to miniaturize and integrate microfluidic concept with these devices. The advent of microfluidics not only makes these biosensors suitable for real-time practical application but also makes them cost-effective, portable and more sensitive. During the last few years, several research groups globally have successfully developed miniaturized/microfluidic biosensor-integrated electrochemical platforms for health care applications. The present chapter briefly describes the fabrication, characterization, materials used and types of these biosensor devices and summarizes some of the recent advance applications in health management. The future prospects and present limitations are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Panjan, P., Virtanen, V., Sesay, A.M.: Determination of stability characteristics for electrochemical biosensors via thermally accelerated ageing. Talanta 170, 331–336 (2017). https://doi.org/10.1016/j.talanta.2017.04.011

    Article  CAS  Google Scholar 

  2. Thévenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 16, 121–131 (2001). https://doi.org/10.1016/S0956-5663(01)00115-4

    Article  Google Scholar 

  3. Lowe, C.R., Lowe, C.R., Collyer, S.D., Higson, S.P.J., Newman, J.D., Turner, A.P.F., Marks, R.S., Mccourt, P., Kramer, K.: Handbook of Biosensors and Biochips Table of Contents, vol. 41, pp. 217–232 (2007), ISBN: 9780470019054

    Google Scholar 

  4. Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962). https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  Google Scholar 

  5. Perumal, V., Hashim, U.: Advances in biosensors: principle, architecture and applications. J. Appl. Biomed. 12, 1–15 (2014). https://doi.org/10.1016/j.jab.2013.02.001

    Article  Google Scholar 

  6. Wilson, G.S., Hu, Y.: Enzyme-based biosensors for in vivo measurements. Chem. Rev. 100, 2693–2704 (2000). https://doi.org/10.1021/cr990003y

    Article  CAS  Google Scholar 

  7. Conroy, P.J., Hearty, S., Leonard, P., O’Kennedy, R.J.: Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 20, 10–26 (2009). https://doi.org/10.1016/j.semcdb.2009.01.010

    Article  CAS  Google Scholar 

  8. Cagnin, S., Caraballo, M., Guiducci, C., Martini, P., Ross, M., Santaana, M., Danley, D., West, T., Lanfranchi, G.: Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors (Switzerland) 9, 3122–3148 (2009). https://doi.org/10.3390/s90403122

    Article  CAS  Google Scholar 

  9. Suzuki, K.: Biosensing. Anal. Sci. 23, 3 (2007). https://doi.org/10.2116/analsci.23.3

    Article  CAS  Google Scholar 

  10. Lu, L., Hu, X., Zhu, Z.: Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. TrAC—Trends Anal. Chem. 87, 58–70 (2017). https://doi.org/10.1016/j.trac.2016.12.007

  11. Abdulhalim, I., Zourob, M., Lakhtakia, A.: Overview of Optical Biosensing Techniques (2008). https://doi.org/10.1002/9780470061565.hbb040

  12. Yang, W., Ratinac, K.R., Ringer, S.R., Thordarson, P., Gooding, J.J., Braet, F.: Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angew. Chem.—Int. Ed. 49, 2114–2138 (2010). https://doi.org/10.1002/anie.200903463

    Article  CAS  Google Scholar 

  13. Aydemir, N., Malmström, J., Travas-Sejdic, J.: Conducting polymer based electrochemical biosensors. Phys. Chem. Chem. Phys. 18, 8264–8277 (2016). https://doi.org/10.1039/c5cp06830d

    Article  CAS  Google Scholar 

  14. Monošík, R., Streďanský, M., Šturdík, E.: Biosensors—Classification, characterization and new trends. Acta Chim. Slovaca 5, 109–120 (2012). https://doi.org/10.2478/v10188-012-0017-z

    Article  Google Scholar 

  15. Alonso-Lomillo, M.A., Domínguez-Renedo, O., Arcos-Martínez, M.J.: Screen-printed biosensors in microbiology: a review. Talanta 82, 1629–1636 (2010). https://doi.org/10.1016/j.talanta.2010.08.033

  16. Dong, Y., Min, X., Kim, W.S.: A 3-D-printed integrated PCB-based electrochemical sensor system. IEEE Sens. J. 18, 2959–2966 (2018). https://doi.org/10.1109/JSEN.2018.2801459

    Article  CAS  Google Scholar 

  17. Goral, V.N., Hsieh, Y.C., Petzold, O.N., Faris, R.A., Yuen, P.K.: Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds. J. Micromech. Microeng.. 21 (2011). https://doi.org/10.1088/0960-1317/21/1/017002

  18. Gale, B.K., Jafek, A.R., Lambert, C.J., Goenner, B.L., Moghimifam, H., Nze, U.C., Kamarapu, S.K.: A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3 (2018). https://doi.org/10.3390/inventions3030060

  19. Stevenson, J.T.M., Gundlach, A.M.: The application of photolithography to the fabrication of microcircuits. J. Phys. E. 19, 654–667 (1986). https://doi.org/10.1088/0022-3735/19/9/001

    Article  CAS  Google Scholar 

  20. Campaña, A.L., Florez, S.L., Noguera, M.J., Fuentes, O.P., Puentes, P.R., Cruz, J.C., Osma, J.F.: Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors 9 (2019). https://doi.org/10.3390/bios9010041

  21. Nadar, S.S., Patil, P.D., Tiwari, M.S., Ahirrao, D.J.: Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review. Crit. Rev. Biotechnol. 41, 1046–1080 (2021). https://doi.org/10.1080/07388551.2021.1898327

    Article  CAS  Google Scholar 

  22. Mohammad, M., Razmjou, A., Liang, K., Asadnia, M., Chen, V.: Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization. ACS Appl. Mater. Interfaces 11, 1807–1820 (2019). https://doi.org/10.1021/acsami.8b16837

    Article  CAS  Google Scholar 

  23. Cao, L., Han, G.C., Xiao, H., Chen, Z., Fang, C.: A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal. Chim. Acta. 1096, 34–43 (2020). https://doi.org/10.1016/j.aca.2019.10.049

    Article  CAS  Google Scholar 

  24. Li, J., Li, Z., Dou, Y., Su, J., Shi, J., Zhou, Y., Wang, L., Song, S., Fan, C.: A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. Chem. Commun. 57, 4726–4729 (2021). https://doi.org/10.1039/d1cc00825k

    Article  CAS  Google Scholar 

  25. Zhu, X., Huang, J., Liu, J., Zhang, H., Jiang, J., Yu, R.: A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale 9, 5658–5663 (2017). https://doi.org/10.1039/c7nr00958e

    Article  CAS  Google Scholar 

  26. Shitanda, I., Mitsumoto, M., Loew, N., Yoshihara, Y., Watanabe, H., Mikawa, T., Tsujimura, S., Itagaki, M., Motosuke, M.: Continuous sweat lactate monitoring system with integrated screen-printed Mgo-templated carbon-lactate oxidase biosensor and microfluidic sweat collector. Electrochim. Acta. 368, 137620 (2021). https://doi.org/10.1016/j.electacta.2020.137620

    Article  CAS  Google Scholar 

  27. Nasseri, B., Soleimani, N., Rabiee, N., Kalbasi, A., Karimi, M., Hamblin, M.R.: Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 117, 112–128 (2018). https://doi.org/10.1016/j.bios.2018.05.050

    Article  CAS  Google Scholar 

  28. Rumeysa Akçapınar.pdf (n.d.)

    Google Scholar 

  29. Funari, R., Chu, K.Y., Shen, A.Q.: Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosens. Bioelectron. 169, 112578 (2020). https://doi.org/10.1016/j.bios.2020.112578

    Article  CAS  Google Scholar 

  30. Zhang, W., He, Z., Yi, L., Mao, S., Li, H., Lin, J.M.: A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosens. Bioelectron. 102, 652–660 (2018). https://doi.org/10.1016/j.bios.2017.12.017

    Article  CAS  Google Scholar 

  31. Nunna, B.B., Mandal, D., Lee, J.U., Singh, H., Zhuang, S., Misra, D., Bhuyian, M.N.U., Lee, E.S.: Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg. 6 (2019). https://doi.org/10.1186/s40580-019-0173-6

  32. Evans, D., Papadimitriou, K.I., Vasilakis, N., Pantelidis, P., Kelleher, P., Morgan, H., Prodromakis, T.: A novel microfluidic point-of-care biosensor system on printed circuit board for cytokine detection. Sensors (Switzerland) 18, 1–14 (2018). https://doi.org/10.3390/s18114011

    Article  CAS  Google Scholar 

  33. Liu, J., Jasim, I., Shen, Z., Zhao, L., Dweik, M., Zhang, S., Almasri, M.: A microfluidic based biosensor for rapid detection of Salmonella in food products. PLoS ONE 14, 1–18 (2019). https://doi.org/10.1371/journal.pone.0216873

    Article  CAS  Google Scholar 

  34. Adampourezare, M., Dehghan, G., Hasanzadeh, M., Hosseinpoure Feizi, M.A.: Application of lateral flow and microfluidic bio-assay and biosensing towards identification of DNA-methylation and cancer detection: recent progress and challenges in biomedicine. Biomed. Pharmacother. 141, 111845 (2021). https://doi.org/10.1016/j.biopha.2021.111845

  35. Wu, Q., Zhang, Y., Yang, Q., Yuan, N., Zhang, W.: Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors (Switzerland) 19 (2019). https://doi.org/10.3390/s19224916

  36. Bruch, R., Johnston, M., Kling, A., Mattmüller, T., Baaske, J., Partel, S., Madlener, S., Weber, W., Urban, G.A., Dincer, C.: CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosens. Bioelectron. 177 (2021). https://doi.org/10.1016/j.bios.2020.112887

  37. Caneira, C.R.F., Soares, R.R.G., Pinto, I.F., Mueller-Landau, H.S., Azevedo, A.M., Chu, V., Conde, J.P.: Development of a rapid bead-based microfluidic platform for DNA hybridization using single- and multi-mode interactions for probe immobilization. Sens. Actuators, B Chem. 286, 328–336 (2019). https://doi.org/10.1016/j.snb.2019.01.133

    Article  CAS  Google Scholar 

  38. Ghrera, A.S., Pandey, C.M., Malhotra, B.D.: Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sens. Actuators, B Chem. 266, 329–336 (2018). https://doi.org/10.1016/j.snb.2018.03.118

    Article  CAS  Google Scholar 

  39. Pursey, J.P., Chen, Y., Stulz, E., Park, M.K., Kongsuphol, P.: Microfluidic electrochemical multiplex detection of bladder cancer DNA markers. Sens. Actuators, B Chem. 251, 34–39 (2017). https://doi.org/10.1016/j.snb.2017.05.006

    Article  CAS  Google Scholar 

  40. Alsabbagh, K., Hornung, T., Voigt, A., Sadir, S., Rajabi, T., Länge, K.: Microfluidic impedance biosensor chips using sensing layers based on DNA-based self-assembled monolayers for label-free detection of proteins. Biosensors 11, 1–12 (2021). https://doi.org/10.3390/bios11030080

    Article  CAS  Google Scholar 

  41. Gupta, N., Renugopalakrishnan, V., Liepmann, D., Paulmurugan, R., Malhotra, B.D.: Cell-based biosensors: recent trends, challenges and future perspectives. Biosens. Bioelectron. 141, 111435 (2019). https://doi.org/10.1016/j.bios.2019.111435

    Article  CAS  Google Scholar 

  42. Zhai, J., Yi, S., Jia, Y., Mak, P.I., Martins, R.P.: Cell-based drug screening on microfluidics. TrAC—Trends Anal. Chem. 117, 231–241 (2019). https://doi.org/10.1016/j.trac.2019.05.018

  43. Liu, Q., Wu, C., Cai, H., Hu, N., Zhou, J., Wang, P.: Cell-based biosensors and their application in biomedicine. Chem. Rev. 114, 6423–6461 (2014). https://doi.org/10.1021/cr2003129

    Article  CAS  Google Scholar 

  44. Su, L., Jia, W., Hou, C., Lei, Y.: Microbial biosensors: a review. Biosens. Bioelectron. 26, 1788–1799 (2011). https://doi.org/10.1016/j.bios.2010.09.005

    Article  CAS  Google Scholar 

  45. Chen, P., Guo, Y., Wang, J., Du, W., Feng, X., Liu, B.F.: A localized chemical pulse generator for the development of a microfluidic cell-based biosensor. Sens. Actuators, B Chem. 251, 112–119 (2017). https://doi.org/10.1016/j.snb.2017.05.038

    Article  CAS  Google Scholar 

  46. Brennan, L.M., Widder, M.W., McAleer, M.K., Mayo, M.W., Greis, A.P., van der Schalie, W.H.: Preparation and testing of impedance-based fluidic biochips with RTgill-W1 cells for rapid evaluation of drinking water samples for toxicity. J. Vis. Exp. 2016, 1–8 (2016). https://doi.org/10.3791/53555

    Article  CAS  Google Scholar 

  47. Khan, N.I., Song, E.: Lab-on-a-chip systems for aptamer-based biosensing. Micromachines 11, 1–30 (2020). https://doi.org/10.3390/mi11020220

    Article  Google Scholar 

  48. Vandghanooni, S., Sanaat, Z., Farahzadi, R., Eskandani, M., Omidian, H., Omidi, Y.: Recent progress in the development of aptasensors for cancer diagnosis: focusing on aptamers against cancer biomarkers. Microchem. J. 170, 106640 (2021). https://doi.org/10.1016/j.microc.2021.106640

    Article  CAS  Google Scholar 

  49. Jiang, Y., Zou, S., Cao, X.: A simple dendrimer-aptamer based microfluidic platform for E. coli O157:H7 detection and signal intensification by rolling circle amplification. Sens. Actuators, B Chem. 251, 976–984 (2017). https://doi.org/10.1016/j.snb.2017.05.146

  50. Bhardwaj, T., Dalal, P., Rathore, A.S., Jha, S.K.: An aptamer based microfluidic chip for impedimetric detection of Ranibizumab in a bioreactor. Sens. Actuators, B Chem. 312, 127941 (2020). https://doi.org/10.1016/j.snb.2020.127941

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amreen, K., Guha, K., Goel, S. (2023). An Overview of Integrated Miniaturized/Microfluidic Electrochemical Biosensor Platforms for Health Care Applications. In: Dutta, G., Biswas, A. (eds) Next Generation Smart Nano-Bio-Devices. Smart Innovation, Systems and Technologies, vol 322. Springer, Singapore. https://doi.org/10.1007/978-981-19-7107-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7107-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7106-8

  • Online ISBN: 978-981-19-7107-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics