Skip to main content

Engineering Application of Gaseous Detonations

  • Chapter
  • First Online:
Gaseous Detonation Physics and Its Universal Framework Theory

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 310 Accesses

Abstract

Engineering applications of gas detonation include detonation propulsion, detonation and explosion processing and detonation-driving wind tunnel technology. To achieve thrust, detonation propulsion uses the expansion and acceleration of the high-temperature and high-pressure gas generated by detonation combustion. Typical detonation propulsion concepts include pulse detonation engine, oblique detonation engine and rotating detonation engine. When high pressure acts on the surface of special materials, detonation can be used to create engineered properties and shapes, which is known as explosion processing. To generate strong shock for compressing air, the detonation-driven wind tunnel uses the high temperature and high-pressure products of the detonation gas as the high-pressure driving source of the pulse-type shock tunnel. Examples of such detonation-driven shock tunnels are the JF-10 and JF-12 of the Institute of Mechanics, Chinese Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bussing T, Gappas G (1994) An introduction to pulse detonation engines. AIAA Paper263

    Google Scholar 

  2. Hoffmann H (1940) Reaction-propulsion produced by intermittent detonative combustion. German Research Institute for Gliding, Rept. ATI-52365

    Google Scholar 

  3. Nicholls JA, Wilkinson HR, Morrison RB (1957) Intermittent detonation as a thrust-producing mechanism. Jet Propulsion 27(5):534

    Article  Google Scholar 

  4. Krzychi LJ (1962) Performance characteristics on an intermittent detonative combustion. AD-284312, U.S. Naval Ordnance Test Station, China Lake, CA

    Google Scholar 

  5. Heldman D, Shreeve RP, Eildman S (1986) Detonation pulse engines. AIAA Paper 1683

    Google Scholar 

  6. Hinkey JB, Bussing TRA, Kaye L (1995) Shock tube experiments for the development of a hydrogen-fueled pulse detonation engines. AIAA Paper 2578

    Google Scholar 

  7. Bussing TRA, Hinkey JB, Kaye L (1994) Pulse detonation engine preliminary design considerations. AIAA Paper 3220

    Google Scholar 

  8. Bussing TRA (1995) A rotary valve multiple combustor pulse detonation engine. AIAA Paper 2577

    Google Scholar 

  9. Nicholls JA, Cullen RE, Ragland KW (1966) Feasibility studies of a rotating detonation wave rocket motor. J Spacecr Rocket 3(6):893–898

    Article  Google Scholar 

  10. Dabora EK (1994) Status of gaseous detonation waves and their role in propulsion. Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Combustion Inst., Pittsburgh, Pa, pp 11–18

    Google Scholar 

  11. Hertzberg A, Bruckner AP, Bogdanoff DW (1988) Ram accelerator: anew chemical method for accelerating projectiles to ultrahigh velocities. AIAA J 26(2):195–203

    Article  ADS  Google Scholar 

  12. Kull A, Burnham E, Knowlen C, Bruckner AP, Hertzberg A (1989) Experimental studies of the super detonative ram accelerator modes. AIAA Paper 2632

    Google Scholar 

  13. Yungster S, Radhakrishnan K (1995) Computational study of flow establishment in a ram accelerator. AIAA Paper 2489

    Google Scholar 

  14. Kantrowitz A (1972) Propulsion to orbit by ground-based lasers. Astronaut Aeronaut 10(5):74

    Google Scholar 

  15. Eidelman S, Grossmann W, Lottati I. A review of propulsion applications of the pulseddetonation engine concept. AAIA Paper 24

    Google Scholar 

  16. Kailasanath K (2000) Review of propulsion applications of the pulsed detonation waves. AIAA J 38(9):1698–1708

    Google Scholar 

  17. Fusina G (2003) Numerical investigation of oblique detonation wave for a shcramjet combustor. University of Toronto, Graduate Department of Aerospace Science and Engineering

    Google Scholar 

  18. Dunlap R, Brehm RL, Nicholls JA (1958) A preliminary study of the application of steady-state detonative combustion to a reaction engine. J Jet Propul 28:51–456

    Google Scholar 

  19. Lee JHS (2008) The detonation phenomenon. Cambridge University Press, UK

    Book  Google Scholar 

  20. Chernyi G, Gilinskii S (1970) High velocity motion of solid bodies in combustible gas mixtures. Astronautica Acta 15:539–545

    Google Scholar 

  21. Ashford SA, Emanuel G (1994) Wave angle for oblique detonation waves. ShockWaves 3:327–329

    ADS  MATH  Google Scholar 

  22. Fujiwara T, Matsuo A (1988) Two-dimensional detonation supported by a blunt body or a wedge. AIAA Paper 98

    Google Scholar 

  23. Li C, Kailasanath K, Oran ES (1994) Detonation structures behind oblique shocks. Phys Fluids 6:1600–1611

    Google Scholar 

  24. Luis F, Figueira DS, Bruno D (2000) Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combust Flame 121:152–166

    Article  Google Scholar 

  25. Papalexandris MV (2000) A numerical study of wedge-induced detonations. Combust Flame 120:526–538

    Google Scholar 

  26. Teng H-H, Zhao W, Jiang Z-L (2007) A novel oblique detonation structure and its stability. Chin Phys Lett 24:1985–1988

    Article  ADS  Google Scholar 

  27. Lu FK, Fan H, Wilson DR (2006) Detonation waves induced by a confined wedge. Aerosp Sci Technol 1:679–685

    Article  Google Scholar 

  28. Dabora EK, Desbordes D, Wagner HG (1991) Oblique detonation at hypersonic velocities. Dynam Detonations Explosions, AIAA 133:187–201

    Google Scholar 

  29. Viguier C, Gourara A, Desbordes D (1996) Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixtures. In: Proceedings of twenty-seventh symposium (international) on combustion, pp 3023–3031

    Google Scholar 

  30. Desbordes D, Hamada L, Guerraud C (1995) Supersonic H2-air combustions behind oblique shock waves. Shock Waves 4:339–345

    Google Scholar 

  31. Oran ES, Gamezo VN (2007) Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust Flame 148:4–47

    Article  Google Scholar 

  32. Viguier C, Desbordes D (1998) Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow. In: Proceedings of twenty-sixth symposium (international) on combustion 2207–2214

    Google Scholar 

  33. Rocha Pimentel CA, Figueira d Silva LF, Deshaies B, Azevedo JL. Numerical study of oblique shock wave/oblique detonation wave transition over a wedge. In: Proceedings of the 5th Asian-Pacific international symposium on combustion and energy utilization, pp 38–45

    Google Scholar 

  34. Pimentel CAR, Azevedo JLF, Silva LF, Deshaies B (2002) Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions. J Braz Soc Mech Sci XXIV:149–157

    Google Scholar 

  35. Broda J-C (1993) An experimental study of oblique detonation waves. Doctoral Dissertations. AAI9405253

    Google Scholar 

  36. Choi JY, Kim DW, Jeung IS, Ma F, Yang V (2007) Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc Combustion Instit 31:2473–2480

    Google Scholar 

  37. Li C, Kailasanath K, Oran ES (1993) Effects of boundary layers on oblique detonation structures. AIAA 450

    Google Scholar 

  38. Atamanchuck T, Sislian J (1990) On and off design performance analysis of hypersonic detonation wave ramjets. In: AIAA/SAE/ASME/ASEE 26th joint propulsion conference, AIAA

    Google Scholar 

  39. Menees G, Adelman H, Cambier J, Bowles J (1992) Wave combustor for trans-atmospheric vehicles. J Propul Power 8:709–713

    Article  Google Scholar 

  40. Ashford SA (1994) Oblique detonation waves with application to oblique detonation wave engines and comparison of hypersonic propulsion engines. The Universityof Oklahoma

    Google Scholar 

  41. Valorani M, Giacinto MD, Buongiorno C (2001) Performance prediction for oblique detonation wave engines (ODWE). Acta Astronaut 48:211–228

    Article  ADS  Google Scholar 

  42. Yuan S, Huang Z (1995) Comparison of hypersonic air breathing engine performance among different combustion modes—evaluation of C-J oblique detonation wave engines (in Chinese). ACTA Aerodynamica Sinica 13:48–56

    Google Scholar 

  43. Yuan S, Zhao W, Huang Z (2000) Primary experimental observation of standing oblique detonation waves (in Chinese). ACTA Aerodynamica Sinica 18(4):473–477

    Google Scholar 

  44. Fan D, Fan B (1999) The essential feature of steady detonation wave using propulsion (in Chinese). J Astronaut 20(2):48–54

    Google Scholar 

  45. Cui D, Fan B, Chen Q (1999) Numerical simulation and visualization of oblique detonation stabilized on a projectile (in Chinese). J Ballistics 11(3):62–66

    Google Scholar 

  46. Voitsekhovskii BV (1959) Statsionarnaya Dyetonatsiya. Doklady AkademiiNauk SSSR 129(6):1254–1256

    Google Scholar 

  47. Voitsekhovskii BV, Mitrofanov VV, Topchiyan ME (1963) Strukturafronta Dyetonatsii Gazakh, Izdatel’stvo. Sibirskogo Otdeleniya AN SSSR 129(6):1254–1256

    Google Scholar 

  48. Nicholls JA, Cullen RE (1964) The feasibility of a rotating detonation wave rocket motor. Technical Reports, University of Michigan, TR-RPL-TDR-64-113, Ann Arbor, MI

    Google Scholar 

  49. Adamson TC, Olsson GR (1967) Performance analysis of a rotating detonation wave rocket engine (rotating detonation wave rocket engine performance analyzed and compared to conventional rocket engines). Acta Astronaut 14(4):405–415

    Google Scholar 

  50. Bykovskii FA, Zhdan SA, Vedernikov EF (2012) Continuous spin detonations. J Propul Power 22(6):1204–1216

    Article  Google Scholar 

  51. Lu FK, Braun EM (2014) Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J Propul Power 30(5):1125–1142

    Article  Google Scholar 

  52. Vasil’Ev AA (2013) The principal aspects of application of detonation in propulsion systems. J Combust (2013-6-20), 2013(4)

    Google Scholar 

  53. Sichel M, Foster JC (1979) The ground impulse generated by a plane fuel–air explosion with side relief. Acta Astronaut 6(3–4):243–256

    Article  ADS  Google Scholar 

  54. Frolov SM, Aksenov VS, Ivanov VS et al (2015) Large-scale hydrogen–air continuous detonation combustor. Int J Hydrogen Energy 40(3):1616–1623

    Article  Google Scholar 

  55. Rankin BA, Codoni JR, Cho KY et al (2019) Investigation of the structure of detonation waves in a non-premixed hydrogen–air rotating detonation engine using mid-infrared imaging. Proc Combust Inst 37(3):3479–3486

    Article  Google Scholar 

  56. Mous JR, Griffith BJ, Szema KY, Best JT (1983) Hypersonic Mach number and real gas effects on space shuttle orbit aerodynamics. AIAA 343

    Google Scholar 

  57. Romere PO, Kanipe DB, Young JC (1981) Space shuttle entry aerodynamic comparisons of flight 1 with preflight predictions. AIAA 2476

    Google Scholar 

  58. Underwood JM, Cooke DR (1981) A preliminary correlation of orbit shuttle flights (STS 1&2) with preflight predictions. AIAA 2476

    Google Scholar 

  59. Holden MS (1984) Large energy national shock tunnel description and capabilities. Arvin Calspan, Buffalo, New York

    Google Scholar 

  60. Stalker RT, Morrson WRD (1989) New generation of free piston shock tunnel facilities. In: Proceeding of 17th international symposium on shock tube and waves, Bethem

    Google Scholar 

  61. Bird GA (1957) A note on combustion driven tubes. Royal Aircraft Establishment, AGARD Rep 146

    Google Scholar 

  62. Yu H et al (1989) New progresses on detonation-driving research. In: Proceedings of the 5th national conference of shock tube and shock waves

    Google Scholar 

  63. Yu H et al (1998) Experimental observation of real gas effects (863-2-6-11, in Chinses). Evaluation reports of a project

    Google Scholar 

  64. Taylor G (1950) The dynamics of the combustion products behind plane and spherical detonation fronts in explosives. Proc Roy Soc A Math Phys Eng Sci 200(1061):235–247

    MATH  Google Scholar 

  65. Yu H, Zhao W, Lin J (1998) Experimental observation of real gas effects (863-2-6-11, in Chinses). Inspection reports of a project

    Google Scholar 

  66. Jiang Z, Yu H, Takayama K (1999) Investigation into converging gaseous detonation drivers. In: Shock waves, proceeding of ISSW22, London, UK

    Google Scholar 

  67. Zhao W, Jiang Z (2000) Experimental investigation on detonation driven shock tunnel. In: 7th international workshop on shock tube technology, New York, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonglin Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, Z., Teng, H. (2022). Engineering Application of Gaseous Detonations. In: Gaseous Detonation Physics and Its Universal Framework Theory. Shock Wave and High Pressure Phenomena. Springer, Singapore. https://doi.org/10.1007/978-981-19-7002-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7002-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7001-6

  • Online ISBN: 978-981-19-7002-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics