Skip to main content

Power Generation with Raindrops

  • Chapter
  • First Online:
Emerging Trends in Mechanical and Industrial Engineering

Abstract

India being an emergent nation has increased stipulations for power. Significantly more than half of India’s electricity generation is based on coal, wind, etc. However, these energy-generating resources have significant drawbacks that avert them from being employed in all situations. Furthermore, until 2040, annual energy consumption is expected to rise by more than 1%. Understanding this scenario and the need of the nation, researchers experimented with the efficacious use of raindrops to supplement existing power-producing methods. Many places like Sikkim and Meghalaya get year-round high rainfall. Many approaches have been developed to utilize raindrops as a source of energy. The most commanding feature of this method is that for raindrop energy money will be spent only at the time of installation. Raindrops are an indispensable source of energy, but the form in which they occur is a major obstacle in their use for power generation. As a result, developing a system that can productively convert the energy associated with raindrops to electrical energy while maximizing conversion efficiency is tough. ‘Droplet-Based Electricity Generation (DEG), Hybrid solar panels, Superhydrophobic Magnetoelectric Generator (SMEG), and Piezoelectric Sensor Working’ are some of the approaches described in this study for the same. The method that we found most effective and want to work on further with improved efficiency is DEG (Droplet-Based Electricity Generation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.cnbc.com/2019/11/12/global-energy-demand-will-keep-world-burning-fossil-fuels-agency-says.html

  2. https://m.economictimes.com/industry/renewables/2030-renewable-energy-target-panel-to-be-set-up-soon-for-mission-500gw/amp_articleshow/88267104.cms

  3. Zhang ZH, Li XM, Yin J, Xu Y, Fei WW, Xue MM, Wang Q, Zhou JX, Guo WL (2018) Emerging hydrovoltaic technology. Nat Nanotechnol 13:1109–1119

    Article  Google Scholar 

  4. Misriana S, Safitri N (2019) Different trends of hybrid solar and raindrops energies to generate photovoltaic. Mater Sci Eng 536. https://doi.org/10.1088/1757-899X/536/1/012058

  5. Chung J, Heo D, Kim B, Lee S (2018) Superhydrophobic water-solid contact triboelectric generator by simple spray-on-fabrication method. Micromachines 9:593

    Article  Google Scholar 

  6. Zheng MA, Jingwei AI, Yamei YUE, Kun WANG, Bin SU (2021) A superhydrophobic magnetoelectric generator for high-performance conversion from raindrops to electricity. Nano Energy 83:105846

    Article  Google Scholar 

  7. Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23

    Article  Google Scholar 

  8. Zheng L et al (2015) A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock. Adv Energy Mater 1–8. https://doi.org/10.1002/AENM.201501152

  9. Venkataraman A (2015) Pseudocapacitors for energy storage. Dissertations and theses paper 2486. https://doi.org/10.15760/ETD.2483

  10. Tang Q et al (2016) A solar cell that is triggered by sun and rain. J Angew Chem Int Edn 55:5243–5246. https://doi.org/10.1002/ANIE.201602114

    Article  Google Scholar 

  11. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(N°5):1597–1614. ISSN 1754–5692, https://doi.org/10.1039/C3EE44164D

  12. Xu W, Zheng H, Liu Y, Zhou X, Zhang C, Song Y, Deng X, Leung M, Yang Z, Xu RX, Wang ZL, Zeng XC, Wang Z (2020) A droplet-based electricity generator with high instantaneous power density. Nature 578:392–396

    Google Scholar 

  13. Jeon S-B, Kim D, Yoon G-W, Yoon J-B, Choi Y-K (2015) Self-Cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy 12:636–645

    Article  Google Scholar 

  14. Yu J, Ma E, Ma T (2018) Exponential energy harvesting through repetitive reconfigurations of a system of capacitors. Commun Phys 1:9

    Article  Google Scholar 

  15. Wang ZL (2017) New wave power. Nature 542:159–160

    Google Scholar 

  16. Liu Y et al (2014) Pancake bouncing on superhydrophobic surfaces. Nat Phys 10:515–519

    Google Scholar 

  17. Bird JC, Dhiman R, Kwon H-M, Varanasi KK (2013) Reducing the contact time of a bouncing drop. Nature 503:385–388 (2013); Erratum 505:436 (2014)

    Google Scholar 

  18. Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417:811

    Article  Google Scholar 

  19. Xiong J et al (2017) Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv Energy Mater 7:1701243

    Google Scholar 

  20. Jin S et al (2018) Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators. Adv Mater 30:1705840

    Google Scholar 

  21. Xu WH et al (2019) Slips-teng: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl Sci Rev 6:540–550

    Google Scholar 

  22. Lin Z-H, Cheng G, Lee S, Pradel KC, Wang ZL (2014) Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv Mater 26:4690–4696

    Article  Google Scholar 

  23. Wong C-H, Dahari Z. Abd Manaf A. Miskam MA (2015) Harvesting raindrop energy with piezoelectrics: a review. J Electron Mater 44(1):13–21. https://doi.org/10.1007/S11664-014-3443-4

  24. Misriana S, Safitri N (2019) Different trends of hybrid solar and raindrops energies to generate photovoltaic. IOP Conf Series: Mater Sci Eng 536:012058. https://doi.org/10.1088/1757-899X/536/1/012058

  25. Mehraeen S, Jagannathan S, Corzine KA (2010) Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam. IEEE Trans Ind Electron 57(3):820–830

    Google Scholar 

  26. http://www.digitaljournal.com/news/environment/graphene-layer-lets-solar-panels-generate-energy-from-raindrops/article/488166

  27. Badruzzaman Y, Widiastuti AN (2014) Roadmap energy in special region of Yogyakarta to empower renewable energy source. In 2014 international symposium on technology management and emerging technologies (ISTMET), pp 285–290

    Google Scholar 

  28. Chin-Hong W, Dahari Z, ABD Manaf A, Sidek O, Miskam MA, Mohamed JJ (2013) Simulation of piezoelectric raindrop energy harvester. In: 2013 IEEE Tencon Spring conference, pp 465–469

    Google Scholar 

  29. Schmidt VH (1992) Piezoelectrical energy conversion in windmills. Proc IEEE Ultrasonic Symp 897–904

    Google Scholar 

  30. Ingalgi GK, Deshmukh SS, Mote SB, Burbure AA (2020) Nano power generation from rain drops as well as. Novateur Publications Int J Innov Eng Res Technol [IJIERT] 7(3). ISSN: 2394–3696

    Google Scholar 

  31. Allen JJ, Smith AJ (2001) Energy harvesting EEL. J Fluids Struct 15:1–12

    Article  Google Scholar 

  32. Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to energy conversion. PhD Thesis, University of California

    Google Scholar 

  33. Sodano HA, Park G, Leo DJ, Inman DJ (2003) Model of piezoelectric power harvesting beam. ASME Int Mech Eng Cong RD&D Exp

    Google Scholar 

  34. Wen GJ, Lin YH, Yang HH, Pan CT (2003) Design and fabrication of high efficiency piezoelectric vibration induced micro power generator. ASME Int Mech Eng Cong RD&D Exp

    Google Scholar 

  35. Vallee JL (2004) Techniguide de la m´et´eo. Nathan, Paris

    Google Scholar 

  36. Mundo CHR, Sommerfield M, Tropea C (1998) on the modelling of liquid sprays impinging on surfaces. Atomizat Sprays 8:625–652

    Article  Google Scholar 

  37. Clanet C, Beguin C, Richard D, Quere D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199

    Google Scholar 

  38. Biance AL, Chevy F, Clanet C, Lagubeau G, Quere D (2006) On the elasticity of a liquid shock. J Fluid Mech 554:47–66

    Google Scholar 

  39. Guigon R, Chaillout JJ, Despesse G, Jager T (2007) Dispositif De R´Ecup´Eration D’´Energie M´Ecanique De Membranes Excit´Ees Par Des Chocs Ou Des Vibrations Brevet De Propri´Et´E Industrielle (En Cours De D´Epˆot)

    Google Scholar 

  40. Bruhat G (1963) M´Ecanique—Cours De Physique G´En´Erale Cinqui`Eme ´Edn. Masson&Cie, Paris

    Google Scholar 

  41. Guigon R (2006) Dimensionnement Et R´Ealisation D’une Structure Pi´Ezo´Electrique Vibrante Pour La R´Ecup´Eration De L’´Energie M´Ecanique Des Gouttes De Pluie Diplˆome De Recherche Technologique Soutenue `A L’institut National Polytechnique De Grenoble

    Google Scholar 

  42. Richard D, Clanet C, Quere D (2002) Contact time of a bouncing drop. Nature 417:811

    Google Scholar 

  43. Okumura K, Chevy F, Richard D, Quere D, Clanet C (2003) Water spring: a model for bouncing drops. Europhy Lett 62:237–243

    Article  Google Scholar 

  44. https://qz.com/658757/graphene-coated-solar-panels-can-create-electricity-from-raindrops/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Sachdeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A. et al. (2023). Power Generation with Raindrops. In: Li, X., Rashidi, M.M., Lather, R.S., Raman, R. (eds) Emerging Trends in Mechanical and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-6945-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6945-4_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6944-7

  • Online ISBN: 978-981-19-6945-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics