Skip to main content
  • 198 Accesses

Abstract

In recent years, the advanced techniques have provided powerful tools for characterizing materials at micro- and nanoscales. This chapter reviews the developing history, test principle, parameter setting, and data analysis of a few techniques for measuring the microstructures and the small-scale mechanical properties of cementitious materials, including NI/MI, SPM, nanoscratch, SEM, X-ray CT, and MIP techniques. The instrumented indentation techniques can measure the mechanical properties at the micrometer and nanometer scales. The SPM technique can characterize the mechanical properties as well as the thickness of individual phases under the non-destructive high-resolution conditions. A new loading mode of the constant vertical loading rate is proposed for continuous fracture properties measurement by nanoscratch technique. The content of this chapter can deepen the understanding of current advanced techniques applied to cementitious materials for testing conducted at micro scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akono, A. T., Randall, N. X., & Ulm, F. J. (2012). Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals. Journal of Materials Research, 27(2), 485–493.

    Article  CAS  Google Scholar 

  • Akono, A. T., & Ulm, F. J. (2014). An improved technique for characterizing the fracture toughness via scratch test experiments. Wear, 313(1–2), 117–124.

    Article  CAS  Google Scholar 

  • Akono, A. T., & Ulm, F. J. (2017). Microscopic toughness of viscous solids via scratching: From amorphous polymers to gas shale. Journal of Nanomechanics and Micromechanics, 7(3), 04017009.

    Article  Google Scholar 

  • Allison, P. G., Moser, R. D., Weiss, C. A., Malone, P. G., & Morefield, S. W. (2012). Nanomechanical and chemical characterization of the interface between concrete, glass–ceramic bonding enamel and reinforcing steel. Construction and Building Materials, 37, 638–644.

    Article  Google Scholar 

  • Ambrose, J. (1973). Computerized transverse axial scanning of the brain. Proceedings of the Royal Society of Medicine, 66(8), 833–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif, S. A., Wahl, K. J., Colton, R. J., & Warren, O. L. (2001). Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. Journal of Applied Physics, 90(3), 1192–1200.

    Article  Google Scholar 

  • Bager, D. H., & Sellevold, E. J. (1975). Mercury porosimetry of hardened cement paste: The influence of particle size. Cement and Concrete Research, 5, 171–177.

    Article  Google Scholar 

  • Balooch, G., Marshall, G. W., Marshall, S. J., Warren, O. L., Asif, S. A. S., & Balooch, M. (2004). Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. Journal of Biomechanics, 37, 1223–1232.

    Article  CAS  PubMed  Google Scholar 

  • Baruchel, J., Buffiere, J. Y., Cloetens, P., Di Michiel, M., Ferrie, E., Ludwig, W., Maire, E., & Salvo, L. (2006). Advances in synchrotron radiation microtomography. Scripta Materialia, 55(1), 41–46.

    Article  CAS  Google Scholar 

  • Bhushan, B., Gupta, B. K., & Azarianb, M. H. (1995). Nanoindentation, microscratch, friction and wear studies of coatings for contact recording applications. Wear, 181, 743–758.

    Article  Google Scholar 

  • Binning, G., Rohrer, H., Gerber, Ch., & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Physical Review Letters, 49, 57.

    Google Scholar 

  • Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.

    Article  CAS  PubMed  Google Scholar 

  • Bristowe, P. D., Crocker, A. G., & Norgett, M. J. (1974). The structure of twin boundaries in body centred cubic metals. Journal of Physics f: Metal Physics, 4(11), 1859.

    Article  CAS  Google Scholar 

  • Broers, A. N. (1965). Selective ion beam etching in the scanning electron microscope. University of Cambridge, Ph.D. thesis.

    Google Scholar 

  • Charitidis, C., Panayiotatos, Y., & Logothetidis, S. (2003). A quantitative study of the nano-scratch behavior of boron and carbon nitride films. Diamond and Related Materials, 12(3–7), 1088–1092.

    Article  CAS  Google Scholar 

  • Chen, J. J., Sorelli, L., Vandamme, M., Ulm, F. J., & Chanvillard, G. (2010). A Coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: Evidence for C-S–H/Ca(OH)2 nanocomposites. Journal of the American Ceramic Society, 93(5), 1484–1493.

    CAS  Google Scholar 

  • Constantinides, G., Chandran, K. S. R., Ulm, F. J., & Van Vliet, K. J. (2006). Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 430(1–2), 189–202.

    Article  Google Scholar 

  • Constantinides G., Ulm F. J. (2006). Invariant mechanical properties of calcium-silicat-hydrates (C-S-H) in cement-based materials: Instrumented nanoindentation and microporomechanical modeling. Cambridge, MA, Civil and Environmental Engineering Department, Massachusetts Institute of Technology. Ph.D. thesis.

    Google Scholar 

  • Constantinides, G., & Ulm, F. J. (2007). The nanogranularnature of C-S-H. Journal of the Mechanics and Physics of Solids, 55, 64–90.

    Article  CAS  Google Scholar 

  • Cook, R. A., & Hover, K. C. (1991). Experiments on the contact angle between mercury and hardened cement paste. Cement and Concrete Research, 21, 1165–1175.

    Article  CAS  Google Scholar 

  • Cormack, A. M. (1963). Representation of a function by its line integrals, with some radiological applications. Journal of Applied Physics, 34(9), 2722–2727.

    Article  Google Scholar 

  • Cormack, A. M. (1964). Representation of a function by its line integrals, with some radiological applications. II. Journal of Applied Physics, 35(10), 2908–2913.

    Google Scholar 

  • Dang, F., Lei, G., Ding, W., Ma, H., & Chen, H. (2015). Study on the CT meso-test experiment of static and dynamic failure processes of concrete. Journal of Hydraulic Engineering, 34(1), 189–196. (In Chinese).

    Google Scholar 

  • Davydov, D., Jirásek, M., & Kopecký, L. (2011). Critical aspect of nano-indentation technique in application to hardened cement paste. Cement and Concrete Research, 41, 20–29.

    Article  CAS  Google Scholar 

  • De Chiffre, L., Carmignato, S., Kruth, J. P., Schmitt, R., & Weckenmann, A. (2014). Industrial applications of computed tomography. Annals CIRP, 63(2), 655–677.

    Article  Google Scholar 

  • Delesse, M. (1847). Procédé mécanique pour déterminer la composition des roches. Comptes Rendus De L’académie Des Sciences, 25, 544–547.

    Google Scholar 

  • Diamond, S., & Dolch, W. L. (1972). Generalised log-normal distribution of pore sizes in hydrated cement paste. Journal of Colloid and Interface Science, 38, 234–244.

    Article  CAS  Google Scholar 

  • Diamond, S. (2000). Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cement and Concrete Research, 30(10), 1517–1525.

    Article  CAS  Google Scholar 

  • Drake, L. C. (1949). Pore-size distribution in porous materials—application of high pressure mercury porosimeter to cracking catalysts. Industrial and Engineering Chemistry, 41(4), 780–785.

    Article  CAS  Google Scholar 

  • Everhart, T. E., & Thornley, R. F. M. (1960). Wide-band detector for micro-microampere low-energy electron currents. Journal of Scientific Instruments, 37, 246–248.

    Article  Google Scholar 

  • Gao, X., Wei, Y., & Huang, W. (2018). Critical aspects of scanning probe microscopy mapping when applied to cement pastes. Advances in Cement Research, 30(7), 293–304.

    Article  Google Scholar 

  • Gawler, J., Sanders, M. D., Bull, J. W., Du Boulay, G., & Marshall, J. (1974). Computer assisted tomography in orbital disease. British Journal of Ophthalmology, 58(6), 571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godara, A., Raabe, D., & Green, S. (2007). The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomaterialia, 3(2), 209.

    Article  CAS  PubMed  Google Scholar 

  • Herbert, E. G., Oliver, W. C., & Pharr, G. M. (2008). Nanoindentation and the dynamic characterization of viscoelastic solids. Journal of Physics D-Applied Physics, 41, 074021.

    Article  Google Scholar 

  • Hodge, A. M., & Nieh, T. G. (2004). Evaluating abrasive wear of amorphous alloys using nanoscratch technique. Intermetallics, 12(7–9), 741–748.

    Article  CAS  Google Scholar 

  • Hoover, C. G., & Ulm, F. J. (2015). Experimental chemo-mechanics of early-age fracture properties of cement paste. Cement and Concrete Research, 75, 42–52.

    Article  CAS  Google Scholar 

  • Hu, C., Han, Y., Gao, Y., Zhang, Y., & Li, Z. (2014). Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites. Materials Characterization, 95, 129–139.

    Article  CAS  Google Scholar 

  • Hu, J., Qian, Z., Liu, Y., & Zhang, M. (2015). High-temperature failure in asphalt mixtures using micro-structural investigation and image analysis. Construction and Building Materials, 84(6), 136–145.

    Article  Google Scholar 

  • Huang, L., Lu, J., & Xu, K. (2004). Elasto-plastic deformation and fracture mechanism of a diamond-like carbon film deposited on a Ti–6Al–4V substrate in nano-scratch test. Thin Solid Films, 466(1–2), 175–182.

    Article  CAS  Google Scholar 

  • Kang, S. H., Kim, J. J., Kim, D. J., & Chung, Y. S. (2013). Effect of sand grain size and sand-to-cement ratio on the interfacial bond strength of steel fibers embedded in mortars. Construction and Building Materials, 47, 1421–1430.

    Article  Google Scholar 

  • Khedmati, M., Kim, Y. R., Turner, J. A., Alanazi, H., & Nguyen, C. (2018). An integrated microstructural-nanomechanical-chemical approach to examine material-specific characteristics of cementitious interphase regions. Materials Characterization, 138, 154–164.

    Article  CAS  Google Scholar 

  • Knoll, M. (1935). Static potential and secondary emission of bodies under electron radiation. Z Tech Physik, 16, 467.

    Google Scholar 

  • Knoll, M., & Theile, R. (1939). Scanning electron microscope for determining the topography of surfaces and thin layers. Z Physik, 113, 260.

    Article  CAS  Google Scholar 

  • Kong, W., Wei, Y., & Wang, S. (2020). Research progress on cement-based materials by X-ray computed tomography. International Journal of Pavement Research and Technology, 13, 366–375.

    Article  Google Scholar 

  • Kong, W. K., Wei, Y., Wang, Y. Q., & Sha, A. M. (2021). Development of micro and macro fracture properties of cementitious materials exposed to freeze-thaw environment at early ages. Construction and Building Materials, 271(15), 121502.

    Article  CAS  Google Scholar 

  • Kruth, J. P., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre, L., & Weckenmann, A. (2011). Computed tomography for dimensional metrology. Annals CIRP, 60(2), 821–842.

    Article  Google Scholar 

  • Lcdley, R. S., Di Chiro, G., Luessenhop, A. J., & Twigg, H. L. (1974). Computerized transaxial X-ray tomography of the human body. Science, 186(4160), 207–212.

    Article  Google Scholar 

  • Li, W., Kawashima, S., & Xiao, J. (2016). Comparative investigation on nanomechanical properties of hardened cement paste. Materials and Structures, 49(5), 1591–1604.

    Article  CAS  Google Scholar 

  • Li, X., & Bhushan, B. (2002). A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization, 48(1), 11–36.

    Article  CAS  Google Scholar 

  • Liang, S., Wei, Y., & Gao, X. (2017). Strain-rate sensitivity of cement paste by microindentation continuous stiffness measurement: Implication to isotache approach for creep modeling. Cement and Concrete Research, 100, 84–95.

    Article  CAS  Google Scholar 

  • Lide, D. R. (2003). Handbook of chemistry and physics (84th ed.). CRC Press.

    Google Scholar 

  • Marinoni, N., Voltolini, M., Mancini, L., & Cella, F. (2012). Influence of aggregate mineralogy on alkali-silica reaction studied by X-ray powder diffraction and imaging techniques. Journal of Materials Science, 47(6), 2845–2855.

    Article  CAS  Google Scholar 

  • Mallick, S., Anoop, M. B., & Rao, K. B. (2019). Creep of cement paste containing fly ash-an investigation using microindentation technique. Cement and Concrete Research, 121, 21–36.

    Article  CAS  Google Scholar 

  • Masoero, E., Del Gado, E., Pellenq, R. M., Ulm, F. J., & Yip, S. (2012). Nanostructure and nanomechanics of cement: Polydisperse colloidal packing. Physical Review Letters, 109(15), 155503.

    Article  CAS  PubMed  Google Scholar 

  • Mondal, P., Shah, S. P., & Marks, L. (2007). A reliable technique to determine the local mechanical properties the nanoscale for cementitious materials. Cement and Concrete Research, 37, 1440–1444.

    Article  CAS  Google Scholar 

  • Nguyen, D. T., Alizadeh, R., Beaudoin, J. J., Pourbeik, P., & Raki, L. (2014). Microindentation creep of monophasic calcium-silicate-hydrates. Cement and Concrete Composites, 48, 118–126.

    Article  CAS  Google Scholar 

  • Nieh, T. G., Schuh, C., Wadsworth, J., et al. (2002). Strain rate-dependent deformation in bulk metallic glasses. Intermetallics, 10(11), 1177–1182.

    Article  CAS  Google Scholar 

  • Oatley, C. W., & Everhart, T. E. (1957). The examination of p-n junctions in the scanning electron microscope. Journal Electronics, 2, 568–570.

    Google Scholar 

  • Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Materials Research, 7, 1564–1582.

    Article  CAS  Google Scholar 

  • Olivier, B., Ulm, F. J., & Lemarchand, E. (2003). A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research, 33(9), 1293–1309.

    Article  Google Scholar 

  • Paxton, R., Ambrose, J. (1974). The EMI scanner. A brief review of the first 650 patients. British Journal of Radiology, 47(561), 530–565.

    Google Scholar 

  • Pease, R. F. W., & Nixon, W. C. (1965). High resolution scanning electron microscopy. Journal of Scientific Instruments, 42, 81–85.

    Article  Google Scholar 

  • Pichler, C., & Lackner, R. (2009). Identification of logarithmic-type creep of calcium-silicate-hydrates by means of nanoindentation. Strain, 45(1), 17–25.

    Article  Google Scholar 

  • Randall, N. X., Vandamme, M., & Ulm, F. J. (2009). Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. Journal of Materials Research, 24(3), 679–690.

    Article  CAS  Google Scholar 

  • Richardson, I. G. (2004). Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume. Cement and Concrete Research, 34(9), 1733–1777.

    Article  CAS  Google Scholar 

  • Ritter, H. L., & Drake, L. C. (1945). Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Industrial & Engineering Chemistry Analytical Edition, 17(12), 782–786.

    Article  CAS  Google Scholar 

  • Ritter, H. L., & Erich, L. C. (1948). Pore size distribution in porous materials. Analytical Chemistry, 20(7), 665–670.

    Article  CAS  Google Scholar 

  • Scrivener, K., Snellings, R., & Lothenbach. B. (2016). A practical guide to microstructural analysis of cementitious materials. CRC Press.

    Google Scholar 

  • Sellevold, E. J. (1974). Mercury porosimetry of hardened cement paste cured or stored at 97 C. Cement and Concrete Research, 4, 399–404.

    Article  CAS  Google Scholar 

  • Smith, K. C. A. (1956). The scanning electron microscope and its fields of application. University of Cambridge, Ph.D. thesis.

    Google Scholar 

  • Smith, K. C. A., & Oatley, C. W. (1955). The scanning electron microscope and its fields of application. British Journal of Applied Physics, 6, 391–399.

    Article  Google Scholar 

  • Tabor, D. (1970). The hardness of solids. Review of Physics in Technology, 1(3), 145.

    Article  Google Scholar 

  • Tian, W., Dang, F. N., & Xie, Y. L. (2015). CT test analysis of meso damage and fracture process of concrete under tensile loading. Journal of Civil and Environmental Engineering, 37(2), 73–78. (In Chinese).

    Google Scholar 

  • Vandamme, M. (2008). The nanogranular origin of concrete creep: A nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates (Ph.D. thesis), MIT, 366.

    Google Scholar 

  • Vandamme, M., & Ulm, F. J. (2009). Nanogranular origin of concrete creep. Proceedings of the National Academy of Sciences, 106(26), 10552–10557.

    Article  CAS  Google Scholar 

  • Vandamme, M., Ulm, F. J., & Fonollosa, P. (2010). Nanogranular packing of C-S–H at substochiometric conditions. Cement and Concrete Research, 40(1), 14–26.

    Article  CAS  Google Scholar 

  • Vandamme, M., Tweedie, C., Constantinides, G., Ulm, F., & Vliet, J. (2012). Quantifying plasticity independent creep compliance and relaxation of viscoelastoplastic materials under contact loading. Journal of Materials Research, 27(1), 302–312.

    Article  CAS  Google Scholar 

  • Vandamme, M., & Ulm, F. J. (2013). Nanoindentation investigation of creep properties of calcium silicate hydrates. Cement and Concrete Research, 52, 38–52.

    Article  CAS  Google Scholar 

  • Velez, K., Maximilien, S., Damidot, D., Fantozzi, G., & Sorrentino, F. (2001). Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cement and Concrete Research, 31(4), 555–561.

    Article  CAS  Google Scholar 

  • von Ardenne, M. (1938a). Das Elektronen-Rastermikroskop. Praktische Ausfuhrung Zeitschrift Technology Physics, 19, 407–416.

    Google Scholar 

  • von Ardenne, M. (1938b). Das Elektronen-Rastermikroskop. Theoretische Grundlagen. Zeitschrift Physics, 109, 553–572.

    Google Scholar 

  • Washburn, E. W. (1921a). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences, 7(4), 115–116.

    Article  CAS  Google Scholar 

  • Washburn, E. W. (1921b). The dynamics of capillary flow. Physical Review, 17(3), 273–283.

    Article  Google Scholar 

  • Wei, Y., Liang, S. M., & Gao, X. (2017a). Phase quantification in cementitious materials by dynamic modulus mapping. Materials Characterization, 127, 348–356.

    Article  CAS  Google Scholar 

  • Wei, Y., Liang, S. M., & Gao, X. (2017b). Indentation creep of cementitious materials: Experimental investigation from nano to micro length scales. Construction and Building Materials, 143, 222–233.

    Article  CAS  Google Scholar 

  • Wei, Y., Gao, X., & Liang, S. (2018). A combined SPM/NI/EDS method to quantify properties of inner and outer C-S-H in OPC and slag-blended cement pastes. Cement and Concrete Composites, 85, 56–66.

    Article  CAS  Google Scholar 

  • Wei, Y., Wu, Z., Yao, X., & Gao, X. (2019). Quantifying effect of later curing on pores of paste subject to early-age freeze-thaw cycles by different techniques. Journal of Materials in Civil Engineering, 31(8), 04019153.

    Article  Google Scholar 

  • Wei, Y., Kong, W. K., Wang, Y. Q., & Sha, A. M. (2021). Multifunctional application of nanoscratch technique to characterize cementitious materials. Cement and Concrete Research, 140, 106318.

    Article  CAS  Google Scholar 

  • Wells, O. C. (1957). The construction of a scanning electron microscope and its application to the study of fibres. University of Cambridge, Ph.D. thesis.

    Google Scholar 

  • Wilkinson, T. M., Zargari, S., Prasad, M., & Packard, C. E. (2015). Optimizing nano-dynamic mechanical analysis for high-resolution, elastic modulus mapping in organic-rich shales. Journal of Materials Science, 50(3), 1041–1049.

    Article  CAS  Google Scholar 

  • Willis, K. L., Abell, A. B., & Lange, D. A. (1998). Image-based characterization of cement pore structure using wood’s metal intrusion. Cement and Concrete Research, 28(12), 1695–1705.

    Article  CAS  Google Scholar 

  • Winslow, D., Diamond, S. (1969). A mercury porosimetry study of the evolution of porosity in Portland cement. Technical publication.

    Google Scholar 

  • Xu, J., Corr, D. J., & Shah, S. P. (2015). Nanomechanical properties of CSH gel/cement grain interface by using nanoindentation and modulus mapping. Journal of Zhejiang University-Science A, 16(1), 38–46.

    Article  CAS  Google Scholar 

  • Xu, J., Corr, D. J., & Shah, S. P. (2017). Nanoscratch study of the modification effects of nanoSiO2 on C-S-H gel/cement grain interfaces. Journal of Materials in Civil Engineering, 29(9), 04017093.

    Article  Google Scholar 

  • Yang, Y., Zhang, Y., She, W., Wu, Z., Liu, Z., & Ding, Y. (2018). Nondestructive monitoring the deterioration process of cement paste exposed to sodium sulfate solution by X-ray computed tomography. Construction and Building Materials, 186(20), 182–190.

    Article  CAS  Google Scholar 

  • Youn, S. W., & Kang, C. G. (2006). Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (100) surface. Wear, 261(3–15), 328.

    Article  CAS  Google Scholar 

  • Zhang Q. (2014). Creep properties of cementitious materials: effect of water and microstructure: An approach by microindentation. Université Paris-Est.

    Google Scholar 

  • Zhang, Q., Le Roy, R., Vandamme, M., & Zuber, B. (2014). Long-term creep properties of cementitious materials: Comparing microindentation testing with macroscopic uniaxial compressive testing. Cement and Concrete Research, 58, 89–98.

    Article  Google Scholar 

  • Zhang, M. (2017). Pore-scale modelling of relative permeability of cementitious materials using X-ray computed microtomography images. Cement Concrete Res., 95, 18–29.

    Article  CAS  Google Scholar 

  • Zhao, H., & Darwin, D. (1992). Quantitative backscattered electron analysis of cement paste. Cement and Concrete Research, 22(4), 695–706.

    Article  CAS  Google Scholar 

  • Zhao, S., Van Dam, E., Lange, D., & Sun, W. (2016). Abrasion resistance and nanoscratch behavior of an ultra-high performance concrete. Journal of Materials in Civil Engineering, 29(2), 04016212.

    Article  Google Scholar 

  • Zhou, S. Z., Dang, F. N., Chen, H. Q., & Liu, Y. (2009). Fracturing analysis of concrete meso structure under the uniaxial compression test with CT scan. The Ocean Engineering, 27(2), 89–95. (In Chinese).

    Google Scholar 

  • Zworykin, V. A., Hillier, J., & Snyder, R. L. (1942). A scanning electron microscope. ASTM Bull, 117, 15–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Wei .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, Y., Liang, S., Kong, W. (2023). Experimental Techniques. In: Mechanical Properties of Cementitious Materials at Microscale. Springer, Singapore. https://doi.org/10.1007/978-981-19-6883-9_3

Download citation

Publish with us

Policies and ethics