Skip to main content

Magnetism In-Situ TEM

  • Chapter
  • First Online:
In-Situ Transmission Electron Microscopy
  • 983 Accesses

Abstract

The development of the in-situ TEM techniques corresponds to the progress in nano-scale research and it cannot be isolated with the development of electron microscopy. In the 1931, the first transmission electron microscope in the world was invented by Ruska and Knoll, and the detectable spatial resolution of science has made great progress. Until now, the most advanced TEM can easily achieve a spatial resolution below 0.5 Å, which was beyond imagination 100 years ago. Meanwhile, the relevant in-situ experiments have been put forward. The in-situ magnetic technique is one of the core in-situ TEM techniques. Since the 1960s, magnetism in-situ TEM has realized numerous observations of magnetic configurations, magnetization dynamics and magnetic properties. In the progress of magnetism, the magnetism in-situ TEM plays an essential role. This chapter will briefly introduce the history, principle and latest progress in the technologies of magnetism in-situ TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atherton WA (1980) The history of electromagnetic induction. Am J Phys 48(9):781–782. https://doi.org/10.1119/1.12265

    Article  Google Scholar 

  2. Maxwell JC (1865) VIII. A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond 155:459–512. https://doi.org/10.1098/rstl.1865.0008

    Article  Google Scholar 

  3. Kürti N, Simon F (1938) LXXIII. Remarks on the “Curie” scale of temperature. Lond Edinb Dublin Philos Mag J Sci 26(178):849–854. https://doi.org/10.1080/14786443808562176

  4. White RM (2007) Quantum theory of magnetism: magnetic properties of materials. In: Solid-state sciences, 3 edn. Springer Berlin Heidelberg, Berlin. https://doi.org/10.1007/978-3-540-69025-2

  5. Myers HP (2009) Introductory solid state physics. Taylor & Francis, London. https://doi.org/10.1201/9781315273303

  6. Rikken RSM, Nolte RJM, Maan JC, van Hest JCM, Wilson DA, Christianen PCM (2014) Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10(9):1295–1308. https://doi.org/10.1039/c3sm52294f

    Article  CAS  Google Scholar 

  7. Chappert C, Fert A, Van Dau FN (2009) The emergence of spin electronics in data storage. In: Nanoscience and technology. Macmillan Publishers Ltd, UK, pp 147–157. https://doi.org/10.1142/9789814287005_0015

  8. Scheunert G, Heinonen O, Hardeman R, Lapicki A, Gubbins M, Bowman RM (2016) A review of high magnetic moment thin films for microscale and nanotechnology applications. Appl Phys Rev 3(1):011301. https://doi.org/10.1063/1.4941311

    Article  CAS  Google Scholar 

  9. Yuasa S, Hono K, Hu G, Worledge DC (2018) Materials for spin-transfer-torque magnetoresistive random-access memory. MRS Bull 43(5):352–357. https://doi.org/10.1557/mrs.2018.93

    Article  CAS  Google Scholar 

  10. Hubert A, Schäfer R (1998) Magnetic domains: the analysis of magnetic microstructures. Springer Berlin Heidelberg, Berlin. https://doi.org/10.1007/978-3-540-85054-0

  11. Bates LF, Davis PF (1956) ‘Lozenge’ and ‘Tadpole’ domain structures on silicon-iron crystals. Proc Phys Soc Lond Sect B 69(11):1109–1111. https://doi.org/10.1088/0370-1301/69/11/307

    Article  Google Scholar 

  12. Hubert A (1965) Beobachtung und Berechnung von magnetischen Bereichsstrukturen auf Siliziumeisen. Zeitschrift für angewandte Physik 18(5–6):474–479

    CAS  Google Scholar 

  13. Fumagalli P, Rosenberger A, Eggers G, Münnemann A, Held N, Güntherodt G (1998) Quantitative determination of the local Kerr rotation by scanning near-field magneto-optic microscopy. Appl Phys Lett 72(22):2803–2805. https://doi.org/10.1063/1.121463

    Article  CAS  Google Scholar 

  14. Rave W, Zueco E, Schäfer R, Hubert A (1998) Observations on high-anisotropy single crystals using a combined Kerr/magnetic force microscope. J Magn Magn Mater 177–181:1474–1475. https://doi.org/10.1016/S0304-8853(97)00793-2

    Article  Google Scholar 

  15. Chizhik A, Zhukov A, Stupakiewicz A, Maziewski A, Blanco JM, Gonzalez J (2009) Kerr microscopy study of magnetic domain structure changes in amorphous microwires. IEEE Trans Magn 45(10):4279–4281. https://doi.org/10.1109/tmag.2009.2024892

    Article  CAS  Google Scholar 

  16. Tsukahara S, Kawakatsu H (1972) Asymmetric 180° domain walls in single crystal iron films. J Phys Soc Jpn 32(6):1493–1499. https://doi.org/10.1143/jpsj.32.1493

    Article  CAS  Google Scholar 

  17. Newcomb BA, Giannuzzi LA, Lyons KM, Gulgunje PV, Gupta K, Liu Y, Kamath M, McDonald K, Moon J, Feng B, Peterson GP, Chae HG, Kumar S (2015) High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities. Carbon 93:502–514. https://doi.org/10.1016/j.carbon.2015.05.037

    Article  CAS  Google Scholar 

  18. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science, 2nd edn. Springer Science & Business Media, New York. https://doi.org/10.1007/978-0-387-76501-3

  19. Chapman JN, McFadyen IR, McVitie S (1990) Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures. IEEE Trans Magn 26(5):1506–1511. https://doi.org/10.1109/20.104427

    Article  CAS  Google Scholar 

  20. Chapman JN, Waddell EM, Batson PE, Ferrier RP (1979) The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope. Ultramicroscopy 4(3):283–292. https://doi.org/10.1016/S0304-3991(79)80038-8

    Article  Google Scholar 

  21. Shindo D, Park Y-G, Murakami Y, Gao Y, Kanekiyo H, Hirosawa S (2003) Electron holography of Nd–Fe–B nanocomposite magnets. Scr Mater 48(7):851–856. https://doi.org/10.1016/S1359-6462(02)00601-2

    Article  CAS  Google Scholar 

  22. Dunin-Borkowski RE, Kasama T, Harrison RJ (2015) Electron holography of nanostructured materials. In: Nanocharacterisation. The Royal Society of Chemistry, pp 158–210. https://doi.org/10.1039/9781782621867-00158

  23. Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778. https://doi.org/10.1038/161777a0

    Article  CAS  Google Scholar 

  24. Leith EN, Upatnieks J (1965) Photography by laser. Sci Am 212(6):24–35. https://doi.org/10.1038/scientificamerican0665-24

    Article  Google Scholar 

  25. Lichte H (1986) Electron holography approaching atomic resolution. Ultramicroscopy 20(3):293–304. https://doi.org/10.1016/0304-3991(86)90193-2

    Article  CAS  Google Scholar 

  26. Dekkers N, De Lang H (1974) Differential phase contrast in a STEM. Optik 41(4):452–456

    Google Scholar 

  27. Zhang S, Zhang J, Wen Y, Chudnovsky EM, Zhang X (2018) Creation of a thermally assisted skyrmion lattice in Pt/Co/Ta multilayer films. Appl Phys Lett 113(19):192403. https://doi.org/10.1063/1.5053983

    Article  CAS  Google Scholar 

  28. Zhang J, Zhu S, Li H, Zhu L, Hu Y, Xia W, Zhang X, Peng Y, Fu J (2018) Direct observation of dynamical magnetization reversal process governed by shape anisotropy in single NiFe2O4 nanowire. Nanoscale 10(21):10123–10129. https://doi.org/10.1039/c8nr01393d

    Article  CAS  Google Scholar 

  29. Chapman JN (1984) The investigation of magnetic domain structures in thin foils by electron microscopy. J Phys D Appl Phys 17(4):623–647. https://doi.org/10.1088/0022-3727/17/4/003

    Article  CAS  Google Scholar 

  30. Daykin A, Petford-Long A (1995) Quantitative mapping of the magnetic induction distribution using Foucault images formed in a transmission electron microscope. Ultramicroscopy 58(3–4):365–380. https://doi.org/10.1016/0304-3991(95)00008-O

    Article  CAS  Google Scholar 

  31. Shindo D, Murakami Y (2008) Electron holography of magnetic materials. J Phys D Appl Phys 41(18):183002. https://doi.org/10.1088/0022-3727/41/18/183002

    Article  CAS  Google Scholar 

  32. Chapman J, Ploessl R, Donnet D (1992) Differential phase contrast microscopy of magnetic materials. Ultramicroscopy 47(4):331–338. https://doi.org/10.1016/0304-3991(92)90162-D

    Article  Google Scholar 

  33. Chen CT, Idzerda YU, Lin HJ, Smith NV, Meigs G, Chaban E, Ho GH, Pellegrin E, Sette F (1995) Experimental confirmation of the X-Ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75(1):152–155. https://doi.org/10.1103/PhysRevLett.75.152

    Article  CAS  Google Scholar 

  34. Hubert A, Schäfer R (2008) Domain observation techniques. In: Magnetic domains. Springer, Berlin, pp 11–97. https://doi.org/10.1007/978-3-540-85054-0_2

  35. Zuo C, Chen Q, Asundi A (2014) Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform. Opt Expr 22(8):9220–9244. https://doi.org/10.1364/oe.22.009220

    Article  Google Scholar 

  36. Johnston AB, Chapman JN (1995) The development of coherent Foucault imaging to investigate magnetic microstructure. J Microsc 179(2):119–128. https://doi.org/10.1111/j.1365-2818.1995.tb03621.x

    Article  Google Scholar 

  37. Lichte H, Lehmann M (2007) Electron holography—basics and applications. Rep Prog Phys 71(1):016102. https://doi.org/10.1088/0034-4885/71/1/016102

    Article  CAS  Google Scholar 

  38. Midgley PA, Dunin-Borkowski RE (2009) Electron tomography and holography in materials science. Nat Mater 8(4):271–280. https://doi.org/10.1038/nmat2406

    Article  CAS  Google Scholar 

  39. Park HS, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y (2014) Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat Nanotechnol 9(5):337–342. https://doi.org/10.1038/nnano.2014.52

    Article  CAS  Google Scholar 

  40. Shindo D, Oikawa T (2013) Peripheral instruments and techniques for analytical electron microscopy. In: Analytical electron microscopy for materials science. Springer, Tokyo, pp 103–136. https://doi.org/10.1007/978-4-431-66988-3_5

  41. Song D, Li Z-A, Caron J, Kovács A, Tian H, Jin C, Du H, Tian M, Li J, Zhu J, Dunin-Borkowski RE (2018) Quantification of magnetic surface and edge states in an FeGe nanostripe by off-axis electron holography. Phys Rev Lett 120(16):167204. https://doi.org/10.1103/PhysRevLett.120.167204

    Article  Google Scholar 

  42. Hu S, Pei K, Wang B, Xia W, Yang H, Zhan Q, Li X, Liu X, Li R-W (2018) Direct imaging of cross-sectional magnetization reversal in an exchange-biased CoFeB/IrMn bilayer. Phys Rev B 97(5):054422. https://doi.org/10.1103/PhysRevB.97.054422

    Article  Google Scholar 

  43. Masseboeuf A, Gatel C, Bayle-Guillemaud P, Lamy Y, Viala B (2009) The use of Lorentz microscopy for the determination of magnetic reversal mechanism of exchange-biased Co30Fe70/NiMn bilayer. J Magn Magn Mater 321(19):3080–3083. https://doi.org/10.1016/j.jmmm.2009.05.011

    Article  CAS  Google Scholar 

  44. Dunin-Borkowski RE, McCartney MR, Kardynal B, Parkin SSP, Scheinfein MR, Smith DJ (2000) Off-axis electron holography of patterned magnetic nanostructures. J Microsc 200(3):187–205. https://doi.org/10.1046/j.1365-2818.2000.00753.x

    Article  CAS  Google Scholar 

  45. Almeida Trevor P, MuxworthyAdrian R, Kovács A, Williams W, Brown Paul D, Dunin-Borkowski RE (2016) Direct visualization of the thermomagnetic behavior of pseudo–single-domain magnetite particles. Sci Adv 2(4):e1501801. https://doi.org/10.1126/sciadv.1501801

    Article  CAS  Google Scholar 

  46. Matsumoto T, So Y-G, Kohno Y, Sawada H, Ikuhara Y, Shibata N (2016) Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice. Sci Adv 2(2):e1501280. https://doi.org/10.1126/sciadv.1501280

    Article  Google Scholar 

  47. Matsumoto T, So Y-G, Kohno Y, Ikuhara Y, Shibata N (2018) Stable magnetic skyrmion states at room temperature confined to corrals of artificial surface pits fabricated by a focused electron beam. Nano Lett 18(2):754–762. https://doi.org/10.1021/acs.nanolett.7b03967

    Article  CAS  Google Scholar 

  48. Schattschneider P, Rubino S, Hébert C, Rusz J, Kuneš J, Novák P, Carlino E, Fabrizioli M, Panaccione G, Rossi G (2006) Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441(7092):486–488. https://doi.org/10.1038/nature04778

    Article  CAS  Google Scholar 

  49. Schattschneider P, Hébert C, Rubino S, Stöger-Pollach M, Rusz J, Novák P (2008) Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108(5):433–438. https://doi.org/10.1016/j.ultramic.2007.07.002

    Article  CAS  Google Scholar 

  50. Lidbaum H, Rusz J, Liebig A, Hjörvarsson B, Oppeneer PM, Coronel E, Eriksson O, Leifer K (2009) Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. Phys Rev Lett 102(3):037201. https://doi.org/10.1103/PhysRevLett.102.037201

    Article  CAS  Google Scholar 

  51. Yu ACC, Petford-Long A, Miyazaki T (2001) Direct observation of domain structure and magnetization reversal of magnetic thin films using Lorentz transmission electron microscopy. Jpn J Appl Phys 40(Part 1, No. 8):4891–4896. https://doi.org/10.1143/jjap.40.4891

  52. Sugawara A, Shimakura T, Nishihara H, Akashi T, Takahashi Y, Moriya N, Sugaya M (2019) A 0.5-T pure-in-plane-field magnetizing holder for in-situ Lorentz microscopy. Ultramicroscopy 197:105–111. https://doi.org/10.1016/j.ultramic.2018.11.012

    Article  CAS  Google Scholar 

  53. Uhlig T, Heumann M, Zweck J (2003) Development of a specimen holder for in situ generation of pure in-plane magnetic fields in a transmission electron microscope. Ultramicroscopy 94(3):193–196. https://doi.org/10.1016/S0304-3991(02)00264-4

    Article  CAS  Google Scholar 

  54. Jin J, Yan M, Liu Y, Peng B, Bai G (2019) Attaining high magnetic performance in as-sintered multi-main-phase Nd-La-Ce-Fe-B magnets: toward skipping the post-sinter annealing treatment. Acta Mater 169:248–259. https://doi.org/10.1016/j.actamat.2019.03.005

    Article  CAS  Google Scholar 

  55. Pei K, Xia W-X, Wang B-M, Wen X-C, Sheng P, Liu J-P, Liu X-C, Li R-W (2018) Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM. Chin Phys B 27(4):047502. https://doi.org/10.1088/1674-1056/27/4/047502

    Article  CAS  Google Scholar 

  56. Zweck J, Zimmermann T, Schuhrke T (1997) TEM imaging and evalution of magnetic structures in Co/Cu multilayers. Ultramicroscopy 67(1–4):153–162. https://doi.org/10.1016/S0304-3991(96)00107-6

    Article  Google Scholar 

  57. Dunin-Borkowski RE, Kasama T, Wei A, Tripp SL, Hÿtch MJ, Snoeck E, Harrison RJ, Putnis A (2004) Off-axis electron holography of magnetic nanowires and chains, rings, and planar arrays of magnetic nanoparticles. Microsc Res Tech 64(5–6):390–402. https://doi.org/10.1002/jemt.20098

    Article  Google Scholar 

  58. Graef MD, Willard MA, McHenry ME, Yimei Z (2001) In-situ Lorentz TEM cooling study of magnetic domain configurations in Ni2MnGa. IEEE Trans Magn 37(4):2663–2665. https://doi.org/10.1109/20.951267

    Article  Google Scholar 

  59. Romming N, Hanneken C, Menzel M, Bickel Jessica E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R (2013) Writing and deleting single magnetic skyrmions. Science 341(6146):636–639. https://doi.org/10.1126/science.1240573

    Article  CAS  Google Scholar 

  60. Kramer MJ, McCallum RW, Anderson IA, Constantinides S (2012) Prospects for non-rare earth permanent magnets for traction motors and generators. JOM 64(7):752–763. https://doi.org/10.1007/s11837-012-0351-z

    Article  CAS  Google Scholar 

  61. Zhou L, Miller MK, Lu P, Ke L, Skomski R, Dillon H, Xing Q, Palasyuk A, McCartney M, Smith D (2014) Architecture and magnetism of alnico. Acta Mater 74:224–233. https://doi.org/10.1016/j.actamat.2014.04.044

    Article  CAS  Google Scholar 

  62. Fastenau RHJ, van Loenen EJ (1996) Applications of rare earth permanent magnets. J Magn Magn Mater 157–158:1–6. https://doi.org/10.1016/0304-8853(95)01279-6

    Article  Google Scholar 

  63. Minowa T (2008) Rare earth magnets: conservation of energy and the environment. Resour Geol 58(4):414–422. https://doi.org/10.1111/j.1751-3928.2008.00073.x

    Article  CAS  Google Scholar 

  64. Zeng X, Zhang J, Si M, Cao D, Deng X, Ma H, Lan Q, Xue D, Zhang X, Tao K, Peng Y (2019) Direct imaging of dopant sites in rare-earth element-doped permanent magnet and correlated magnetism origin. Nanoscale 11(10):4385–4393. https://doi.org/10.1039/c8nr09922g

    Article  CAS  Google Scholar 

  65. Srinivasamurthy KM, Angadi VJ, Kubrin SP, Matteppanavar S, Sarychev DA, Rudraswamy B (2019) Effect of Ce3+ ion on structural and hyperfine interaction studies of Co0.5Ni0.5Fe2−xCexO4 ferrites: useful for permanent magnet applications. J Supercond Nov Magn 32(3):693–704. https://doi.org/10.1007/s10948-018-4752-2

  66. López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32. https://doi.org/10.1016/j.physrep.2014.09.007

    Article  CAS  Google Scholar 

  67. Liu J, Sepehri-Amin H, Ohkubo T, Hioki K, Hattori A, Schrefl T, Hono K (2015) Grain size dependence of coercivity of hot-deformed Nd–Fe–B anisotropic magnets. Acta Mater 82:336–343. https://doi.org/10.1016/j.actamat.2014.09.021

    Article  CAS  Google Scholar 

  68. Gao RW, Zhang DH, Li W, Li XM, Zhang JC (2000) Hard magnetic property and δM(H) plot for sintered NdFeB magnet. J Magn Magn Mater 208(3):239–243. https://doi.org/10.1016/S0304-8853(99)00562-4

    Article  CAS  Google Scholar 

  69. Gao RW, Feng WC, Liu HQ, Wang B, Chen W, Han GB, Zhang P, Li H, Li W, Guo YQ, Pan W, Li XM, Zhu MG, Li X (2003) Exchange-coupling interaction, effective anisotropy and coercivity in nanocomposite permanent materials. J Appl Phys 94(1):664–668. https://doi.org/10.1063/1.1581380

    Article  CAS  Google Scholar 

  70. Inoue M, Tomita T, Naruse M, Akase Z, Murakami Y, Shindo D (2005) Development of a magnetizing stage for in situ observations with electron holography and Lorentz microscopy. J Electron Microsc 54(6):509–513. https://doi.org/10.1093/jmicro/dfi068

    Article  CAS  Google Scholar 

  71. Akase Z, Aizawa S, Shindo D, Sharma P, Makino A (2015) In-situ Lorentz microscopy of Fe85Si2B8P4Cu1 nanocrystalline soft magnetic alloys. J Magn Magn Mater 375:10–14. https://doi.org/10.1016/j.jmmm.2014.08.101

    Article  CAS  Google Scholar 

  72. De Hosson JTM, Chechenin NG, Alsem D-H, Vystavel T, Kooi BJ, Chezan AR, Boerma DO (2002) Ultrasoft magnetic films investigated with Lorentz transmission electron microscopy and electron holography. Microsc Microanal 8(4):274–287. https://doi.org/10.1017/s1431927602020214

    Article  Google Scholar 

  73. Che RC, Liang CY, He X, Liu HH, Duan XF (2011) Characterization of magnetic domain walls using electron magnetic chiral dichroism. Sci Technol Adv Mater 12(2):025004. https://doi.org/10.1088/1468-6996/12/2/025004

    Article  CAS  Google Scholar 

  74. Catalan G, Seidel J, Ramesh R, Scott JF (2012) Domain wall nanoelectronics. Rev Mod Phys 84(1):119–156. https://doi.org/10.1103/RevModPhys.84.119

    Article  CAS  Google Scholar 

  75. Herranen T, Laurson L (2017) Bloch-line dynamics within moving domain walls in 3D ferromagnets. Phys Rev B 96(14):144422. https://doi.org/10.1103/PhysRevB.96.144422

    Article  Google Scholar 

  76. Wang X, Liao Y, Zhang D, Wen T, Zhong Z (2018) A review of Fe3O4 thin films: synthesis, modification and applications. J Mater Sci Technol 34(8):1259–1272. https://doi.org/10.1016/j.jmst.2018.01.011

    Article  CAS  Google Scholar 

  77. Shin HW, Ahn Y, Son JY (2019) Multiferroic properties and enhanced leakage current characteristics of polycrystalline Bi2MnFeO6 thin films grown on glass substrates. Thin Solid Films 692:137655. https://doi.org/10.1016/j.tsf.2019.137655

    Article  CAS  Google Scholar 

  78. Peng L, Zhang Y, He M, Ding B, Wang W, Tian H, Li J, Wang S, Cai J, Wu G, Liu JP, Kramer MJ, Shen B-G (2017) Generation of high-density biskyrmions by electric current. npj Quant Mater 2(1):30. https://doi.org/10.1038/s41535-017-0034-7

  79. Almeida TP, McGrouther D, Pivak Y, Perez Garza HH, Temple R, Massey J, Marrows CH, McVitie S (2017) Preparation of high-quality planar FeRh thin films forin situTEM investigations. J Phys Conf Ser 903:012022. https://doi.org/10.1088/1742-6596/903/1/012022

    Article  CAS  Google Scholar 

  80. Zhu L, Deng X, Hu Y, Liu J, Ma H, Zhang J, Fu J, He S, Wang J, Wang B, Xue D, Peng Y (2018) Atomic-scale imaging of the ferrimagnetic/diamagnetic interface in Au-Fe3O4 nanodimers and correlated exchange-bias origin. Nanoscale 10(45):21499–21508. https://doi.org/10.1039/c8nr07642a

    Article  CAS  Google Scholar 

  81. Gaul A, Emmrich D, Ueltzhöffer T, Huckfeldt H, Doğanay H, Hackl J, Khan MI, Gottlob DM, Hartmann G, Beyer A (2018) Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein J Nanotechnol 9(1):2968–2979. https://doi.org/10.3762/bjnano.9.276

    Article  CAS  Google Scholar 

  82. Tan A, Li J, Jenkins CA, Arenholz E, Scholl A, Hwang C, Qiu ZQ (2012) Exchange bias in epitaxially grown CoO/MgO/Fe/Ag(001). Phys Rev B 86(6):064406. https://doi.org/10.1103/PhysRevB.86.064406

    Article  CAS  Google Scholar 

  83. Wu J, Park JS, Kim W, Arenholz E, Liberati M, Scholl A, Wu YZ, Hwang C, Qiu ZQ (2010) Direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001). Phys Rev Lett 104(21):217204. https://doi.org/10.1103/PhysRevLett.104.217204

    Article  CAS  Google Scholar 

  84. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y, Che R (2016) CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 28(3):486–490. https://doi.org/10.1002/adma.201503149

    Article  CAS  Google Scholar 

  85. Wu Z, Pei K, Xing L, Yu X, You W, Che R (2019) Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv Funct Mater 29(28):1901448. https://doi.org/10.1002/adfm.201901448

    Article  CAS  Google Scholar 

  86. Li X, Wang L, You W, Xing L, Yu X, Li Y, Che R (2019) Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 11(6):2694–2702. https://doi.org/10.1039/c8nr08601j

    Article  CAS  Google Scholar 

  87. Wang L, Li X, Li Q, Yu X, Zhao Y, Zhang J, Wang M, Che R (2019) Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15(18):1900900. https://doi.org/10.1002/smll.201900900

    Article  CAS  Google Scholar 

  88. Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P (2009) Skyrmion lattice in a chiral magnet. Science 323(5916):915–919. https://doi.org/10.1126/science.1166767

    Article  CAS  Google Scholar 

  89. Mruczkiewicz M, Krawczyk M, Guslienko KY (2017) Spin excitation spectrum in a magnetic nanodot with continuous transitions between the vortex, Bloch-type skyrmion, and Néel-type skyrmion states. Phys Rev B 95(9):094414. https://doi.org/10.1103/PhysRevB.95.094414

    Article  Google Scholar 

  90. Yu XZ, Kanazawa N, Zhang WZ, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y (2012) Skyrmion flow near room temperature in an ultralow current density. Nat Commun 3(1):988. https://doi.org/10.1038/ncomms1990

    Article  CAS  Google Scholar 

  91. Kézsmárki I, Bordács S, Milde P, Neuber E, Eng LM, White JS, Rønnow HM, Dewhurst CD, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A (2015) Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater 14(11):1116–1122. https://doi.org/10.1038/nmat4402

    Article  CAS  Google Scholar 

  92. Dzyaloshinsky I (1958) A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids 4(4):241–255. https://doi.org/10.1016/0022-3697(58)90076-3

    Article  CAS  Google Scholar 

  93. Moriya T (1960) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120(1):91–98. https://doi.org/10.1103/PhysRev.120.91

    Article  CAS  Google Scholar 

  94. Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194. https://doi.org/10.1126/science.1145799

    Article  CAS  Google Scholar 

  95. Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park HS, Tokura Y (2012) Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. Nano Lett 12(3):1673–1677. https://doi.org/10.1021/nl300073m

    Article  CAS  Google Scholar 

  96. Pollard SD, Garlow JA, Yu J, Wang Z, Zhu Y, Yang H (2017) Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Nat Commun 8(1):14761. https://doi.org/10.1038/ncomms14761

    Article  Google Scholar 

  97. Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M (2015) Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat Commun 6(1):8504. https://doi.org/10.1038/ncomms9504

    Article  CAS  Google Scholar 

  98. Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R, Zhang Y (2016) Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Proc Natl Acad Sci 113(18):4918. https://doi.org/10.1073/pnas.1600197113

    Article  CAS  Google Scholar 

  99. Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R (2017) Enhanced stability of the magnetic skyrmion lattice phase under a tilted magnetic field in a two-dimensional chiral magnet. Nano Lett 17(5):2921–2927. https://doi.org/10.1021/acs.nanolett.7b00135

    Article  CAS  Google Scholar 

  100. Du H, Zhao X, Rybakov FN, Borisov AB, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev NS, Zhang Y, Che R, Blügel S, Tian M (2018) Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys Rev Lett 120(19):197203. https://doi.org/10.1103/PhysRevLett.120.197203

    Article  CAS  Google Scholar 

  101. Han B, Gao Y-Y, Zhang Y-L, Liu Y-Q, Ma Z-C, Guo Q, Zhu L, Chen Q-D, Sun H-B (2020) Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy 71:104578. https://doi.org/10.1016/j.nanoen.2020.104578

    Article  CAS  Google Scholar 

  102. Karim A, Guan C, Chen B, Li Y, Zhang J, Zhu L, Deng X, Hu Y, Bi K, Li H, Peng Y, Li L (2020) Dynamic observation of Joule heating-induced structural and domain transformation in smart shape-memory alloy. Acta Mater 186:223–228. https://doi.org/10.1016/j.actamat.2020.01.006

    Article  CAS  Google Scholar 

  103. Venkateswaran SP, Nuhfer NT, De Graef M (2007) Magnetic domain memory in multiferroic Ni2MnGa. Acta Mater 55(16):5419–5427. https://doi.org/10.1016/j.actamat.2007.05.055

    Article  CAS  Google Scholar 

  104. Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park HS, Shindo D, Nagaosa N, Tokura Y (2015) Large anisotropic deformation of skyrmions in strained crystal. Nat Nanotechnol 10(7):589–592. https://doi.org/10.1038/nnano.2015.113

    Article  CAS  Google Scholar 

  105. Eggebrecht T, Möller M, Gatzmann JG, Rubiano da Silva N, Feist A, Martens U, Ulrichs H, Münzenberg M, Ropers C, Schäfer S (2017) Light-induced metastable magnetic texture uncovered by in situ Lorentz microscopy. Phys Rev Lett 118(9):097203. https://doi.org/10.1103/PhysRevLett.118.097203

    Article  Google Scholar 

  106. Zhao X, Wang S, Wang C, Che R (2018) Thermal effects on current-related skyrmion formation in a nanobelt. Appl Phys Lett 112(21):212403. https://doi.org/10.1063/1.5031474

    Article  CAS  Google Scholar 

  107. Wang ZQ, Zhong XY, Yu R, Cheng ZY, Zhu J (2013) Quantitative experimental determination of site-specific magnetic structures by transmitted electrons. Nat Commun 4(1):1395. https://doi.org/10.1038/ncomms2323

    Article  CAS  Google Scholar 

  108. Wang ZC, Zhong XY, Jin L, Chen XF, Moritomo Y, Mayer J (2017) Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr2FeMoO6 using electron energy-loss magnetic chiral dichroism. Ultramicroscopy 176:212–217. https://doi.org/10.1016/j.ultramic.2016.12.024

    Article  CAS  Google Scholar 

  109. Song D-S, Wang Z-Q, Zhong X-Y, Zhu J (2018) Quantitative measurement of magnetic parameters by electron magnetic chiral dichroism. Chin Phys B 27(5):056801. https://doi.org/10.1088/1674-1056/27/5/056801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Che .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Che, R., Peng, Y., Tian, H. (2023). Magnetism In-Situ TEM. In: Sun, L., Xu, T., Zhang, Z. (eds) In-Situ Transmission Electron Microscopy. Springer, Singapore. https://doi.org/10.1007/978-981-19-6845-7_7

Download citation

Publish with us

Policies and ethics